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Abstract

In Euclid’s The Elements, a unique circle in R2 is determined by three noncollinear points. This is
proven geometrically by constructing a triangle from the three points and showing that the intersection of the
perpendicular bisectors of two sides of the triangle gives a point that is equidistant from all three vertices of
the triangle [2]. This point is said to define the center of a circle which circumscribes the triangle formed by
the points. In our research, we demonstrate that circles can be similarly determined in F2

q, the two-dimensional
vector space over the finite field Fq. However, the properties of F2

q cause some interesting cases to arise. Among
these is the possibility for two distinct points to have zero distance. Nevertheless, we show that three dis-
tinct noncollinear points which have nonzero distance from each other determine a unique circle of nonzero radius.

Keywords: Finite fields, circles

1 Introduction

In our project, work was done specifically in F2
q. For

completeness, we define the following:

Definition 1.1. The set G defines a group with respect
to the binary operation ∗ if the following are satisfied:

1. G is closed under ∗.

2. ∗ is associative.

3. G has an identity element, e.

4. Every element of G has an inverse. For each a ∈ G,
there exists b ∈ G such that a ∗ b = b ∗ a = e.

Note that if ∗ on G is commutative, then G is called
an abelian group.

Definition 1.2. The set R defines a ring with respect to
addition and multiplication if the following are satisfied:

1. R forms an abelian group with respect to addition.

2. R is closed with respect to an associative multipli-
cation.

3. The following two distributive laws hold: x(y+z) =
xy + xz and (x + y)z = xz + yz.

Note that if multiplication in R is commutative, then
R is called a commutative ring.

Definition 1.3. The set F defines a field if the following
are satisfied:

1. F is a commutative ring.

2. F has a unity 1 6= 0 such that 1 · x = x · 1 = x for
all x ∈ F .

3. Every nonzero element of F has a multiplicative
inverse.

Every field is an integral domain, meaning that there
are no zero divisors [3]. Zero divisors are nonzero elements
of the integral domain, say a 6= 0, which can be multiplied
by another nonzero element, say b 6= 0, to yield zero:
ab = 0.

Definition 1.4. A field that has a finite number of ele-
ments is called a finite field. It is known that the order of
every finite field is the power of a prime [4]. In this paper,
we use Fq to denote a finite field with q elements where
q = pl, p > 2 is a prime, and l ∈ N. Note that since Fq

is a finite integral domain, the characteristic of the unity
1 is p [3]. In other words, p is the least positive integer
such that p · 1 = 0. Since p > 2 it follows that 2 6= 0, and
we will use this fact.
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Remark 1.5. Throughout this paper, we will use the fol-
lowing notation:

1. a
b will represent (a)(b−1), where b−1 is the multi-
plicative inverse of b.

2. a−b will represent a+(−b), where −b is the additive
inverse of b.

Definition 1.6. Let F be a field. A vector space is a set
V along with an addition on V and a scalar multiplication
on V such that the following properties hold (see [1]):

1. u + v = v + u for all u, v ∈ V .

2. (u + v) + w = u + (v + w) and (ab)v = a(bv) for all
u, v, w ∈ V and all a, b ∈ F.

3. There exists an element 0 ∈ V such that v + 0 = v
for all v ∈ V .

4. For every v ∈ V , there exists w ∈ V such that
v + w = 0.

5. 1v = v for all v ∈ V .

6. a(u + v) = au + av and (a + b)u = au + bu for all
a, b ∈ F and all u, v ∈ V .

Definition 1.7. In this paper we work exclusively in F2
q,

the two-dimensional vector space over the finite field Fq.
Just as R2 is the set of all ordered pairs of real numbers,
one can think of F2

q as all ordered pairs of elements of Fq,
that is, F2

q = {(x, y) : x, y ∈ Fq}.

Definition 1.8. The norm, or distance, between two
points P1 = (x1, y1) and P2 = (x2, y2) where P1, P2 ∈ F2

q,
denoted ||P2 − P1||, is (x2 − x1)2 + (y2 − y1)2.

Note that, because we are working in F2
q, it is possible

for two distinct points to possess zero distance.

Example 1.9. Consider Z2
5, the two-dimensional vector

space over the finite field Z5. We use bar notation to
denote the congruence classes, that is, Z5 = {0, 1, 2, 3, 4}.
In this particular field, modular arithmetic allows us to
demonstrate zero distance between the points (2, 1) and
(0, 0). Substituting these points into the norm equation,
we get ||P2 − P1|| = (2− 0)2 + (1− 0)2 = 4 + 1 = 5 = 0,
since 5 ≡ 0 (mod 5).

Later, we will utilize more interesting consequences of
the zero norm problem.

Definition 1.10. Let Fq[x] denote the polynomial ring
over Fq. Let f ∈ Fq[x] be a polynomial of degree one, that
is, f(x) = mx+b where m, b ∈ Fq. We define a nonvertical
line in F2

q to be the set {(x0, y0) ∈ F2
q : y0 = mx0 + b}.

We say that m is the slope and (0, b) is the y-intercept.
For a ∈ Fq, the vertical line x = a is defined to be the set
{(a, y) : y ∈ Fq}.

Definition 1.11. The perpendicular bisector of the line
segment P1P2, denoted bisector(P1, P2), is given by:

bisector(P1, P2) =
{
P ∈ F2

q : ||P1 − P || = ||P2 − P ||
}
.

Note that the perpendicular bisector is a line and the
slope is still the negative reciprocal of the line it bisects.
This will be demonstrated in Section 3.1.

Definition 1.12. We shall refer to the perpendicular bi-
sector of two points that are zero norm from one another
as a zero line. We will show in Lemma 2.2 that the zero
line is precisely the line through the two points.

Definition 1.13. A circle is defined as the set of all
points equidistant from an arbitrary center. In particu-
lar, a circle centered at C of radius r is given by Sr(C) ={
P ∈ F2

q : ||C − P || = r
}

.

Figure 1 displays a circle of radius zero over Z2
5 to give

an example of what such a circle would look like. Figure
2 demonstrates a circle of nonzero radius over Z2

7.

Theorem 1.14. Let P1, P2, P3 ∈ F2
q be three distinct,

noncollinear points that are nonzero norm from each other.
Then, these points determine a unique circle of nonzero
radius in F2

q.

In order to prove Theorem 1.14, we must first prove
several lemmas which allow us to justify the nonzero claims
of the theorem. The first lemma demonstrates that, when
||P2 − P1|| = 0, the perpendicular bisector of P1P2 is the
line containing points P1, P2 ∈ F2

q. The second lemma
uses the first to demonstrate that an arbitrary point P ∈
F2
q is zero norm from P1 and P2 if it lies on the perpen-

dicular bisector of P1P2 and ||P2 − P1|| = 0. The third
lemma demonstrates that if the square root of an ele-
ment of Fq exists, then there are exactly two square roots
that exist so long as the element is not zero. The fourth
lemma uses the third to demonstrate that if an arbitrary
point P ∈ F2

q lies on a zero line, then it has exactly two
zero lines that pass through it. The fifth lemma uses the
second and fourth to demonstrate that if P1, P2, and P3

are nonzero norm from one another and are noncollinear,
then their perpendicular bisectors do not intersect at a
point that is zero norm from P1, P2, and P3, thus ruling
out circles of radius zero.

We exclude circles of zero radius on the basis that the
unique properties of F2

q are expected to alter the behavior
of circles to such a degree that it warrants a separate
in-depth investigation. Our proof of Theorem 1.14 is a
direct proof which uses Definition 1.11 to algebraically
derive expressions for the center of the circle defined by
three distinct, noncollinear points, the existence of which
is verified by satisfying Definition 1.13. This proof also
requires us to verify that the center exists and is unique,
and validate any division operations required to reach our
conclusion.
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Figure 1: A circle of radius zero centered at (2, 2) over
Z2
5. It is worth noting that in the case of a zero radius

circle, the center of the circle is actually included as part
of the circle.

Figure 2: A circle of radius one centered at (2, 2) over Z2
7

2 Proof of Lemmas

Remark 2.1. Throughout the presented proofs involving
zero lines, we multiply by (x2 − x1)−1 and (y2 − y1)−1.
This multiplication is valid as long as (x2 − x1)−1 and
(y2−y1)−1 exist, or in other words, as long as x1 6= x2 and
y1 6= y2. We can verify that this is the case by considering

the following:
If x2−x1 = 0 and y2−y1 = 0, i.e. x1 = x2 and y1 = y2,

then we have only one point, P1 = P2, a violation of the
initial conditions of our proofs.

If we let one set of coordinates be equal, say x1 = x2,
i.e. x2−x1 = 0, and ||P2−P1|| = (x2−x1)2+(y2−y1)2 = 0
(since we will be specifically investigating zero norms),
then:

||P2 − P1|| = (0)2 + (y2 − y1)2 = 0

=⇒ (y2 − y1)2 = 0

=⇒ y2 = y1.

Again, implying P1 = P2.

We get a similar result if we let y1 = y2. Note that, since
fields are integral domains (see Definition 1.3), it follows
that the square root of zero is zero in our case. From
this set of justifications, we are also guaranteed that it is
impossible to have a horizontal or vertical zero line (since
x1 6= x2 and y1 6= y2 for any two arbitrary points on an
arbitrary zero line).

Lemma 2.2. The perpendicular bisector of two distinct
points zero norm apart is the line containing the two points.
Recall that we shall call such a line a zero line.

Proof. Suppose there exists two points P1, P2 ∈ F2
q such

that ||P2 − P1|| = 0. To show the perpendicular bisector

and the line
←−→
P1P2 are the same, it suffices to show both

lines contain two points in common.
To begin, we make note of the fact that, as demon-

strated in 3.1, we have that the perpendicular bisector of
any two points in F2

q is, in fact, a line.

Now we want to show that both the line
←−→
P1P2 and the

perpendicular bisector of P1 and P2 contain two points in
common. To do this, consider the definition of a perpen-
dicular bisector:

bisector(P1, P2) =
{
P ∈ F2

q : ||P1 − P || = ||P2 − P ||
}
.

If we pick the point P1, which is on
←−→
P1P2, it follows that

P1 is also in bisector(P1, P2), since ||P1 − P1|| = 0 and
||P2−P1|| = 0 by assumption. This can also be shown for
P2. Since P1 and P2 both lie in the bisector, it follows that

the bisector of P1 and P2 is the same line as
←−→
P1P2.

Lemma 2.3. An arbitrary point on the perpendicular bi-
sector of two distinct points zero norm apart is zero norm
from each of the two points.

Proof. Let P1, P2 ∈ F2
q be two distinct points such that

||P2 − P1|| = 0. Let P0 be an arbitrary point on
bisector(P1, P2). By Lemma 2.2 we have that

bisector(P1, P2) =
←−→
P1P2, so we have that P0 is a point

on the line
←−→
P1P2. By Definition 1.11, it suffices to show

||P0 − P1|| = 0.
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y =
y2 − y1
x2 − x1

(x− x1) + y1(
Equation for

←−→
P1P2

)
y0 =

y2 − y1
x2 − x1

(x0 − x1) + y1

(Substituting P0 = (x0, y0))

=⇒ ||P0 − P1|| = (x0 − x1)2

+

[(
y2 − y1
x2 − x1

)
(x0 − x1) + y1 − y1

]2
(Substituting y0 into ||P0 − P1||)

=⇒ ||P0 − P1|| =
(x0 − x1)2

(x2 − x1)2
[
(x2 − x1)2 + (y2 − y1)2

]
(Factoring out (x0 − x1)2(x2 − x1)−2)

=⇒ ||P0 − P1|| = 0

(||P2 − P1|| = 0 by assumption.)

Remark 2.4. Notice that Lemma 2.3 implies that any two
points lying on a zero line will be norm zero apart. To
see this, consider bisector(P0, P1) which is the same zero
line as bisector(P1, P2). Then Lemma 2.3 would imply
that any arbitrary point is also zero norm from P0. See
Figure 3 for a specific example of this.

Figure 3: A zero line in Z2
5. Note that any two points

chosen on the line will have a distance of zero from each
other.

Lemma 2.5. If a ∈ Fq has a square root, then the equa-
tion x2 = a has exactly two solutions as long as a is
nonzero.

Proof. Suppose a 6= 0 has a square root, i.e. there exists
b ∈ Fq such that b2 = a. Then,

x2 = a

=⇒ x2 = b2 (by substituting a with b2)

=⇒ x2 − b2 = 0

=⇒ (x− b)(x + b) = 0

=⇒ x = ±b

Here we note that since b 6= 0, the equation will have two
solutions as long as 2 6= 0. Consequently, x2 = a has
exactly two solutions as long as a has a square root and
2 6= 0. Recall 2 6= 0 since p > 2.

Lemma 2.6. If an arbitrary point P0 lies on a zero line,
there are exactly two zero lines passing through P0.

Proof. Assume that P0 = (x0, y0) ∈ F2
q lies on a zero line.

This implies that there exists (a, b) ∈ F2
q such that (x0 −

a)2 + (y0 − b)2 = 0. Consequently, (y0 − b)2=−(x0 − a)2.
In other words, −(x0 − a)2 has a square root. Then, the
equation (y0 − y)2 = −(x0 − a)2 has solutions y0 − y =
±(y0 − b) =⇒ y = b, 2y0 − b, by Lemma 2.5. These
values for y are distinct because these two values can be
equal only when y0 = b, which cannot happen since a zero
line cannot be horizontal by Remark 2.1. Thus, there
are two values for y, namely y = b and y = 2y0 − b,
that make (a, y) a zero distance from (x0, y0). Since (a, b)
and (a, 2y0 − b) are nonzero norm from each other, they
must lie on separate zero lines by Remark 2.4. Lastly, it
is worth mentioning that we have shown that there are
exactly two zero lines through the arbitrary point P0 =
(x0, y0). If there were a third, then there would have to
be a third point (a, y) such that (x0−a)2 + (y0−y)2 = 0.
However, we have shown above that there are only two
values for y that satisfy this equation.

Lemma 2.7. If three distinct points P1, P2, and P3 are
chosen such that they are nonzero norm from one another
and they are noncollinear, their perpendicular bisectors
cannot intersect at a point C such that ||P1−C|| = ||P2−
C|| = ||P3 − C|| = 0.

Proof. Let P1, P2, P3 ∈ F2
q be points that satisfy the

conditions above. Let C be the unique intersection of
bisector(P1, P2) and bisector(P2, P3). We know that the
intersection is unique because bisector(P1, P2) and
bisector(P2, P3) are nonparallel lines (see Remark 3.2).
For a contradiction, consider the possibility that ||P1 −
C|| = ||P2 − C|| = ||P3 − C|| = 0. Then C shares a zero
line with P1, P2, and P3. Since, by Lemma 2.6, C has
only two zero lines passing through it, at least one pair
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of the points P1, P2, and P3 must lie on the same zero
line. Since all points on a zero line are zero norm from
one another, this would imply that either ||P1−P2|| = 0,
||P1 − P3|| = 0, or ||P2 − P3|| = 0, all of which are con-
tradictions to the hypothesis that none of the points are
zero norm from one another.

As a result of these lemmas, it follows that if we have
three distinct noncollinear points and any two of the three
points are norm zero from each other, then the three
points determine a zero radius circle, thereby allowing us
to specify a circle of nonzero radius by maintaining that
the three points defining it are all nonzero norm from each
other (See Theorem 1.14).

3 Proof of Theorem 1.14

To prove Theorem 1.14, we consider the following:

1. Three noncollinear points, P1, P2, P3 ∈ F2
q, all

nonzero norm from each other.

2. The perpendicular bisectors of P1P2 and P2P3.

3. Some arbitrary point C = (x, y), which is said to
lay on each of the perpendicular bisectors at their
intersection.

We want to show C exists and is a unique solution for the
intersection of the bisectors. This resulting solution will
define the center of the circle containing P1, P2, and P3.

3.1 Derivation of Perpendicular Bisectors

To obtain the bisector of P1P2, let:

||P1 − C|| = ||P2 − C||
(By Definition 1.11)

=⇒ (x1 − x)2 + (y1 − y)2 = (x2 − x)2 + (y2 − y)2

(By Definition 1.8)

=⇒ x2
1 − 2x1x + x2 + y21 − 2y1y + y2

= x2
2 − 2x2x + x2 + y22 − 2y2y + y2

=⇒ x2
1 − 2x1x + y21 − 2y1y

= x2
2 − 2x2x + y22 − 2y2y

=⇒ 2y(y1 − y2) + 2x(x1 − x2)

= x2
1 − x2

2 + y21 − y22

=⇒ y = −
(
x1 − x2

y1 − y2

)
x +

x2
1 − x2

2 + y21 − y22
2(y1 − y2)

(bisector(P1, P2))

Similarly, the bisector of P2P3 can be obtained:

||P2 − C|| = ||P3 − C||
(By Definition 1.11)

=⇒ (x2 − x)2 + (y2 − y)2 = (x3 − x)2 + (y3 − y)2

(By Definition 1.8)

=⇒ y = −
(
x2 − x3

y2 − y3

)
x +

x2
2 − x2

3 + y22 − y23
2(y2 − y3)

(bisector(P2, P3))

Note that if either P1P2 or P2P3 is horizontal, then
either y1 − y2 or y2 − y3 is zero. We must then solve
for x instead of y to avoid dividing by zero (it is easily
verified that, in such a case, the perpendicular bisector
of two points, say (x1, y1) and (x2, y2), horizontal to one
another is the vertical line x = x1+x2

2 ).
Because, by Definition 1.11, we know that ||P1−C|| =

||P2 − C|| and ||P2 − C|| = ||P3 − C||, it follows that
||P1 − C|| = ||P3 − C|| and C is a point equidistant from
points P1, P2, and P3; namely, the center of the circle
defined by these points (see Definition 1.13). We will soon
show that C is unique by using the two perpendicular
bisectors we derived to obtain a generalized solution for
C = (x, y).

3.2 Solving for the Center

To obtain the x-coordinate of C, let:

bisector(P1, P2) = bisector(P2, P3)

=⇒ −
(
x1 − x2

y1 − y2

)
x+

x2
1 − x2

2 + y21 − y22
2(y1 − y2)

= −
(
x2 − x3

y2 − y3

)
x+

x2
2 − x2

3 + y22 − y23
2(y2 − y3)

=⇒ x

(
−
x1 − x2

y1 − y2
+

x2 − x3

y2 − y3

)
=

x2
2 − x2

3 + y22 − y23
2(y2 − y3)

−
x2
1 − x2

2 + y21 − y22
2(y1 − y2)

=⇒ x

(
(y1 − y2)(x2 − x3)− (y2 − y3)(x1 − x2)

(y1 − y2)(y2 − y3)

)
=

(y1 − y2)(x2
2 − x2

3 + y22 − y23)− (y2 − y3)(x2
1 − x2

2 + y21 − y22)

2(y1 − y2)(y2 − y3)

Solving for x we obtain

x =
(y1 − y2)(x2

2 − x2
3 + y22 − y23)− (y2 − y3)(x2

1 − x2
2 + y21 − y22)

2[(y1 − y2)(x2 − x3)− (y2 − y3)(x1 − x2)]
.

To obtain the y-coordinate of C, first, substitute the
solution for x into either bisector(P1, P2) or
bisector(P2, P3), then:

y =

(
−
x1 − x2

y1 − y2

)
·(

(y1 − y2)(x2
2 − x2

3 + y22 − y23)− (y2 − y3)(x2
1 − x2

2 + y21 − y22)

2[(y1 − y2)(x2 − x3)− (y2 − y3)(x1 − x2)]

)
+

x2
1 − x2

2 + y21 − y22
2(y1 − y2)

.
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Simplifying this expression we obtain

y =

(x1 − x2)(x2
2 − x2

3 + y22 − y23)− (x2 − x3)(x2
1 − x2

2 + y21 − y22)

2[(x1 − x2)(y2 − y3)− (x2 − x3)(y1 − y2)]
.

It remains to be verified that this solution exists and
is unique.

3.3 Justifications

Remark 3.1. We know our solution for C exists if the
denominators for both x and y are nonzero; namely, if
2[(y1− y2)(x2−x3)− (y2− y3)(x1−x2)] 6= 0 and 2[(x1−
x2)(y2 − y3)− (x2 − x3)(y1 − y2)] 6= 0.

Consider the case that the denominator for x is zero:

2[(y1 − y2)(x2 − x3)− (y2 − y3)(x1 − x2)] = 0

=⇒ (y1 − y2)(x2 − x3)− (y2 − y3)(x1 − x2) = 0

(Dividing by 2)

=⇒ (y1 − y2)(x2 − x3) = (y2 − y3)(x1 − x2)

=⇒ (y1 − y2)

(x1 − x2)
=

(y2 − y3)

(x2 − x3)

(Slopes of
←−→
P1P2 and

←−→
P2P3 are equal)

Similarly,

2[(x1 − x2)(y2 − y3)− (x2 − x3)(y1 − y2)] = 0

=⇒ (x1 − x2)(y2 − y3)− (x2 − x3)(y1 − y2) = 0

(Dividing by 2)

=⇒ (y2 − y3)

(x2 − x3)
=

(y1 − y2)

(x1 − x2)

(Slopes of
←−→
P1P2 and

←−→
P2P3 are equal)

We have shown that when the denominators of both ex-
pressions are zero, the slopes of

←−→
P1P2 and

←−→
P2P3 are equal.

Since both segments contain a common point P2, this
shows that P1, P2, and P3 must be collinear, a contradic-
tion of the assumptions of Theorem 1.14.

Because we divide by (x1 − x2) and (x2 − x3) above,
we must demonstrate that these cannot be zero. Suppose
that x1−x2 = 0. Then, (y1−y2)(x2−x3) = (y2−y3)(x1−
x2) =⇒ (y1− y2)(x2−x3) = 0. Thus, either y1− y2 = 0
or x2 − x3 = 0. If y1 − y2 = 0, then y1 = y2. Since
x1 − x2 = 0 implies x1 = x2, it follows that P1 = P2,
a contradiction. If x2 − x3 = 0, then x1 = x2 = x3,
suggesting P1, P2, and P3 are collinear, a contradiction.

Remark 3.2. The following verifies the uniqueness of our
solution for C:

We want to show that the point of intersection of two
nonparallel lines exists and is unique. Suppose there exist
two lines, y = m1x+b1 and y = m2x+b2, where m1 6= m2.
We want to find the intersection of these two lines. Well,
m1x + b1 = m2x + b2 =⇒ (m1 − m2)x = b2 − b1.
This gives a solution as long as the lines in question are

not parallel to one another: x =
b2 − b1
m1 −m2

. By insert-

ing this solution back into the equations for x, a solu-

tion for y can be obtained: y = m1

(
b2 − b1
m1 −m2

)
+ b1

and y = m2

(
b2 − b1
m1 −m2

)
+ b2. Rewriting these expres-

sions gives y =
m1b2 −m1b1 + m1b1 −m2b1

m1 −m2
and y =

m2b2 −m2b1 + m1b2 −m2b2
m1 −m2

, which reduce to the solu-

tion y =
m1b2 −m2b1
m1 −m2

. Thus, the intersection exists and

is unique between two nonparallel lines.

4 Conclusion

We have proved directly that three noncolinear points,
all of which are nonzero distance from each other, de-
termine a unique circle of nonzero radius in F2

q (q = pl,
p > 2 is a prime, and l ∈ N). Given three points which
satisfy these conditions, it is possible to find the center
of the circle they determine by finding the intersection
of the perpendicular bisectors of two sets of the points.
Using the definition of perpendicular bisector, it follows
that this intersection is equidistant from all three points,
showing that the intersection determines the center of a
circle containing the three points. By the definition of a
circle, deriving this center, showing it exists, and showing
it is unique sufficiently demonstrates the existence of the
circle containing the three points.
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