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Abstract

	 This paper describes an attempt to use content information to improve an item-based collaborative filter 
for recommending anime. A recommendation engine is a system with the goal of determining how a user 
would rate an item in the database based on how he/she has rated previous items. Recommendation engines 
are classified based on the additional information they use to make predictions. Content information and 
social information are two common sources of information used by a recommender. Content-based recom-
menders use information about the items in the database and look at the similarity between items that the 
user has seen and the item it is trying to evaluate. Collaborative filters look at ratings from other users and 
find similarities between the user’s ratings and other users’ ratings in either a user-to-user comparison or an 
item-to-item comparison. This paper looks at a content-based filter, a user-based collaborative filter, and an 
item-based collaborative filter implemented to work in the domain of anime and compares that to a hybrid 
implementation that uses both content and collaborative information. As expected, this project found that the 
hybrid implementation showed an improvement over the item-based collaborative filtering implementation. 
However, item-based collaborative filtering was shown to perform worse in the domain than user-based 
collaborative filtering, which was the best implementation for the domain.

Key words:  algorithms, anime, collaborative filtering, content analysis, recommendation

Introduction

Currently, there exist over 7,000 anime, including TV 
series, original animation videos, movies, and original 
net anime, with hundreds of new anime being produced 
each year [16]. For simplicity’s sake, anime is often de-
fined as animation made in Japan [31, 38]. “Anime is 
a form of visual culture and media, as well as a type of 
popular entertainment, a commercial product, an object 
of interest, and sometimes an obsession” [36]. Advanc-
es in information technology give individuals access to 
more information and media than ever before, creating 
an issue in recommendation and discovery: how does an 

anime fan decide what to watch next [18]? In the past, 
people relied on recommendations via word of mouth 
or published through the media [41], but since the early 
1990s algorithms have been created that allow software 
to be able to fill this void, providing personalized recom-
mendations based on large amounts of data [24, 33, 42].
	 The term “recommender system” describes “any 
system that produces individualized recommendations 
as output or has the effect of guiding the user in a per-
sonalized way to interesting or useful objects in a large 
space of possible options” [8]. The goal of a recom-
mender system is to determine items or products that 
may interest the users of the system [33]. In this paper, 



the terms “recommendation engine,” “recommendation 
system,” and “recommender system” have the same 
meaning and will be used interchangeably. The 
individual for whom the recommendation is made is 
known as the “active user,” and the item for which a 
prediction is made is known as the “active item.”  

The goal of this project was to design and test a 
solution for the task of accurately predicting a rating 
for any given item in the data set. The design of a 
recommendation engine depends on the domain and the 
characteristics of the available data [33]. While large 
companies such as Netflix are able to gather vast and 
detailed amounts of data for large numbers of users, 
including when viewers pause, fast forward, or rewind; 
what devices they are using to stream; and what time of 
day they are watching [22], it is not always possible to 
make recommendations based on large amounts of 
implicit data, nor should users be required to give out 
large amounts of information to get accurate recom-
mendations. In the anime industry, this is especially 
true, as a single individual may use several streaming 
sites, preventing any one service from getting an 
accurate portrayal of the user’s preferences. Thus, the 
data used in this project is limited to what can be pulled 
from user-submitted sources and does not contain any 
metadata on the users. This allows users to remain 
completely anonymous. Instead, it contains lists of 
items (anime) for each user, along with the user’s 
ratings (on a scale of 0.5 to 5.0, at intervals of .5) for 
the anime on the list.  

The results of this project may be generalized 
beyond anime and applied to other areas with similar 
data sets. Furthermore, this project attempts to explain 
a viable but less common algorithm in addition to 
confirming existing knowledge of common algorithms. 

 
The Domain 

“A domain of recommendation is the set of items 
that the recommender will operate over, but may also 
include the set of aims or purposes that the 
recommender is intended to support” [11]. Typical 
domains include books, movies, TV, music, products, 
and documents. “One lesson that has been learned over 
the past years of recommender systems research is that 
the application domain exerts a strong influence over 
the types of methods that can be successfully applied” 
[10]. One of the unique aspects of this research is that 
the algorithms will be applied to an uncommon 
domain. The domain of anime is comparable to a 
combination of the domain of movies and the domain 
of TV but has some notable differences. Because the 

choice of a recommendation algorithm is dependent 
upon the domain, even the small differences exhibited 
by this domain can have a large impact on the 
applicability of a given algorithm. 

Domains have six characteristics that can influence 
the choice and success of an algorithm: heterogeneity, 
risk, churn, interaction style, preference stability, and 
scrutability [11]. The domain used in this project has 
mid to low heterogeneity, meaning that the items in the 
database, while quite varied, all have similar purposes 
and satisfy similar goals. The domain has low risk, as a 
user does not lose much by accepting a recom-
mendation. The domain also has low churn, as most 
items that are available at some point remain available 
for long periods of time. The domain has an explicit 
interaction style, as users are specifically searching for 
something to watch, and the primary means of 
determining the user’s opinion on an item is through 
explicit ratings. The domain has fairly high preference 
stability, as users are not likely to experience drastic 
changes in opinion over short periods of time. Finally, 
the domain does not require much scrutability, meaning 
a user does not need much of an explanation for how 
the prediction was computed. 
 
The Algorithms 
 

The characteristics of the domain place certain 
constraints on the kinds of knowledge that a 
recommender system can use, while the availability 
and quality of knowledge influences what rec-
ommendation technologies a recommender can 
profitably use [11]. There are three broad categories of 
knowledge (individual, social, and content) that can be 
further expanded into subtypes of knowledge, and 
algorithms are classified based on what categories of 
knowledge they use [3, 11, 17]. 

While all algorithms use personal knowledge 
(knowledge about the active user), they vary in what 
subcategories they use. Because of the domain and 
available sources of knowledge, this project is 
restricted to the use of only opinion information from 
the active user. This eliminates many algorithms, 
leaving only collaborative and content-based algo-
rithms as viable options. Collaborative algorithms rely 
on social knowledge (information about users other 
than the active user), while content-based algorithms 
rely on item features, a specific form of content 
knowledge. 

To reach the aforementioned goals, several algo-
rithms were implemented and compared against each 
other. These algorithms were user-based collaborative 

2017 COMBINING CONTENT WITH A COLLABORATIVE FILTER 3



filtering, item-based collaborative-filtering, content-
based filtering, and a hybrid algorithm involving the 
combination of content information with an item-based 
collaborative filtering algorithm. The implementation 
of common algorithms gives the hybrid algorithm 
suitable controls to be compared against, allowing for a 
better understanding of its performance. 

User-based Collaborative Filtering 

Collaborative filtering algorithms are by far the 
most researched and mature recommendation technol-
ogies [8, 24]. “Collaborative filtering makes pre-
dictions about an individual’s interests based on the 
interests of similar people” [6]. Collaborative filtering 
systems rely solely on a large database of past data for 
many users [33]. Neighborhood-based collaborative 
filtering is characterized by giving a recommendation 
based on the weighted combination of the ratings of a 
subset of users similar to the active user [33]. 

Collaborative filtering algorithms can be grouped 
into two classes: memory-based algorithms, in which 
user data is stored in memory to directly compare 
different users, and model-based algorithms, in which 
user data is analyzed and a model is derived for making 
predictions [7]. Memory-based algorithms, also known 
as neighborhood-based algorithms [28, 40], find users 
in the database with similar rating patterns to the active 
user, known as neighbors, and base the prediction on 
the ratings those users assigned to the active item. In 
contrast, model-based algorithms attempt to model the 
user-item interactions by determining factors repre-
senting latent characteristics of the users in the system 
[15]. While research has shown that state-of-the-art 
model-based algorithms are superior [27], this project 
implements a memory-based algorithm, for a couple 
key reasons.  

Memory-based algorithms are simpler than model-
based approaches: “In their simplest form, only one 
parameter (the number of neighbors used in the 
prediction) requires tuning” [15]. Compounding this is 
the fact that memory-based algorithms are efficient, 
requiring no costly training phase [15]. These factors 
make model-based algorithms easier to implement and 
more intuitive, which is why this type of algorithm was 
chosen for this project. 
The algorithm computes a prediction for the active 
anime by comparing the active user to all the users in 
the database who have rated the active item to 
determine which are the most similar. Then the ratings 
given by the nearest neighbors are combined into a 
weighted average, which forms the prediction given by 

the algorithm. The weight used for the weighted 
average is the similarity. Preliminary testing showed 
that the optimal number of neighbors for the algorithm 
is 11. This means that only the ratings of the 11 users 
that are most like the active user will be used to 
determine the prediction. 

Data. To implement a collaborative filtering algo-
rithm, it is necessary to acquire a database of user 
ratings. This data was collected from Hummingbird.me, 
a free website that allows its users to keep track of 
what they have watched. The API provided by 
Hummingbird gives applications access to information 
about users’ libraries, which includes a list of anime 
rated by the owner of the library. Random users were 
pulled from the Hummingbird API, and their library 
information was saved to a text file to be read in at the 
beginning of the algorithm. 

It was decided that the number of ratings in the 
database should be close to 300k, with the actual 
number being 299,968. Because anime is such a niche 
domain, the number of anime fans are relatively few 
but are quite devoted. Consequently, the domain for 
this project uses data where the number of items is 
much larger than the number of users. This is in 
contrast to the typical data set, which involves many 
more users than items [24]. There are 2698 users in the 
database, having rated, on average, 111 items each, and 
7788 items in the database, having been rated 38.5 
times each, on average. Thus, the sparsity of the data 
set is 0.9857, which is standard for a typical data set 
[24]. 

Similarity – Pearson correlation coefficient. The 
most common way of determining similarity (𝑤𝑤) 
between the active user (𝑎𝑎) and a given user (𝑢𝑢) is 
through the Pearson coefficient, defined as: 

𝑤𝑤𝑎𝑎,𝑢𝑢 =  
∑ (𝑟𝑟𝑎𝑎,𝑖𝑖 −  𝑟̅𝑟𝑎𝑎)(𝑟𝑟𝑢𝑢,𝑖𝑖 − 𝑟̅𝑟𝑢𝑢)𝑖𝑖∈𝐼𝐼

�∑ (𝑟𝑟𝑎𝑎,𝑖𝑖 − 𝑟̅𝑟𝑎𝑎)2 ∑ (𝑟𝑟𝑢𝑢,𝑖𝑖 − 𝑟̅𝑟𝑢𝑢)2𝑖𝑖∈𝐼𝐼𝑖𝑖∈𝐼𝐼

where 𝐼𝐼 is the set of items rated by both users, 𝑟𝑟𝑢𝑢 is the 
average rating given by user 𝑢𝑢, and 𝑟𝑟𝑢𝑢,𝑖𝑖 is the rating 
given to item 𝑖𝑖 by user 𝑢𝑢 [4, 40]. This equation 
compares the ratings of each user on all the items the 
users have in common. The output is a value between -
1 and 1, with -1 representing complete disagreement, 1 
representing complete agreement, and 0 representing 
no relation. The Pearson correlation coefficient also 
accounts for the fact that different users may be using 
different rating scales. 

There have been other similarity measures tested 
in the past, including Spearman rank correlation, 
Kendall’s τ correlation, mean squared differences, 
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entropy, cosine similarity, and adjusted cosine simi-
larity [7, 23, 47]. Nevertheless, the Pearson coefficient 
remains the most popular method of determining the 
similarity between users and has empirically been 
shown to outperform cosine similarity [7, 23]. Thus, 
this project utilizes the Pearson correlation coefficient 
to determine the similarity between users.  

In addition, while research has suggested that 
negative correlations are not valuable in increasing 
prediction accuracy [23, 24], this project uses the most 
highly correlated users, even if the correlation is 
negative. Because some items may not have many 
ratings, it was decided that it was not worth the risk to 
eliminate highly correlated users based on the 
correlation being negative. 

Because it is possible for users to appear similar 
based on only a few items in common, the algorithm 
implements a Significance Weighting factor, which 
devalues correlations based on the number of co-rated 
items [23]. Preliminary testing showed that the optimal 
value for the number of co-rated items is 240. Thus, if 
two users have less than 240 items in common, the 
similarity is divided by 240 and multiplied by the 
number of co-rated items. If the two users have 240 or 
more co-rated items, the similarity is not modified. 

Issues. The domain of anime may not be optimal 
for a collaborative filtering algorithm. A domain should 
have certain qualities to make collaborative filtering a 
good fit [44]. First, there may be issues with the data 
distribution. A suitable domain for collaborative 
filtering should have many ratings per item, often 
requiring more users than items [44]. However, this 
domain has a lot of niche items that are not rated by 
many users. While an average of 38.5 ratings per item 
is already low, compared to typical data sets [24], the 
data set used for this algorithm contains 3400 items 
with fewer than 5 ratings. This is in stark contrast to the 
70 items in the database with over 500 ratings. 
Furthermore, the data set contains more items than it 
does users, and while this may not be indicative of the 
domain as a whole, it has the potential to be 
problematic. 

Likewise, in a suitable domain for collaborative 
filtering, items should be homogenous; every item in 
the database should be identical by all objective 
criteria, differing only in subjective criteria [44]. The 
rationale for this is that collaborative filtering is the 
most valuable when evaluation of items is done in a 
subjective measure [44]. While this largely holds true 
in the domain of anime, the most notable exception is 
in the case of the length of the item. The database 
includes everything from movies that last roughly an 

hour to long-running TV shows that have hundreds of 
episodes.  

One of the biggest issues concerning user-based 
collaborative filtering is scalability, the ability to 
continue functioning well when working with large 
data sets [28, 33]. To find the most similar users in the 
data set, collaborative filtering must check every user 
that has rated the active anime as well as every item 
both users rated. While the worst case scenario, in 
which every user has rated every item, nets this 
algorithm a complexity of O(NM), where M is the 
number of users and N the number of items, the 
algorithm’s performance is closer to O(M + N) due to 
the fact that although the algorithm has to cycle 
through all of the available users, a large majority of 
those users will have rated only a few items, regardless 
of the number of items in the catalog [28]. Techniques 
for sampling are able to reduce the data set by a large 
factor in order to reduce the performance issues [21], 
but these techniques can reduce recommendation 
quality [28]. While the data set this project worked 
with is not as large as the sets used by major 
companies, there was still some lag in generating 
recommendations with this algorithm. However, no 
dimensionality reduction techniques were 
implemented, as the value of implementing one would 
not be worth the cost. 

Item-based collaborative filtering 

In 2003, item-to-item collaborative filtering was 
proposed as a solution to the scalability issues faced by 
user-based collaborative filtering when working with 
the tens of millions of users Amazon has [28]. The 
algorithm uses similarity between individual items, 
rather than the similarity between users, to make 
recommendations [28, 43]. As a model-based collab-
orative filtering algorithm, the ratings are used to 
compute and store the similarity offline, and the stored 
similarity calculations form the model with which 
predictions are made [43]. The similarity is computed 
by looking at the ratings given to the compared items 
by every user that rated both items [28, 33, 43]. While 
the worst case complexity is O(N2M), in practice, not 
all item pairs are actually seen, so the complexity is 
actually closer to O(NM) [28]. The complexity of the 
online component of the algorithm is dependent only 
on how many items the active user has rated [28]. In 
theory, off-line similarity computation is possible with 
user-based filtering, but because the number of 
overlapping items between any two users is generally 
small, a few ratings can make a large difference on the 
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computed similarity; in contrast, the similarity between 
items remains fairly stable, keeping accuracy from 
being lost [43]. The predicted rating for an item can be 
calculated with a weighted average. This approach has 
been shown to lead to faster online systems [28] and 
improved recommendations [43], even when faced 
with limited user data [28], compared to user-based 
collaborative filtering. 

Data. The item-based collaborative filtering 
implementation computed the item similarities from the 
same data used by the user-based collaborative filtering 
algorithm. 11,352,376 co-rated pairs were found, out of 
30,314,790 possible pairs. The similarities were 
computed offline and each item got a separate text file 
of similarities so that the algorithm must only load one 
file at a time, instead of all computed similarities at the 
beginning of the program. However, as a result, every 
similarity was listed on both applicable files, doubling 
the amount of necessary reading in the case that every 
item is recommended. 

Similarity – adjusted cosine similarity. Cosine-
based similarity is a common measure of similarity in 
which two items are thought of as vectors with the 
number of users having rated both items as the number 
of dimensions [28, 43]. “In item-based recommend-
ation approaches, cosine similarity is established as the 
standard metric, as it has been shown that it produces 
the most accurate results” [24]. The cosine between the 
vectors can then be computed and used as similarity. 
Adjusted cosine similarity takes into account the fact 
that not all users rate on the same scale by subtracting 
the corresponding user average from each co-rated pair 
[24, 43]. Thus, the similarity between items I and j is 
given by: 

𝑠𝑠𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗) =  
∑ (𝑅𝑅𝑢𝑢,𝑖𝑖 −  𝑅𝑅�𝑢𝑢)(𝑅𝑅𝑢𝑢,𝑗𝑗 − 𝑅𝑅�𝑢𝑢)𝑢𝑢∈𝑈𝑈

�∑ (𝑅𝑅𝑢𝑢,𝑖𝑖 − 𝑅𝑅�𝑢𝑢)2𝑢𝑢∈𝑈𝑈 �∑ (𝑅𝑅𝑢𝑢,𝑗𝑗 − 𝑅𝑅�𝑢𝑢)2𝑢𝑢∈𝑈𝑈

where 𝑈𝑈 is the set of items rated by both users, 𝑅𝑅𝑢𝑢 is 
the average rating given by user 𝑢𝑢, and 𝑅𝑅𝑢𝑢,𝑖𝑖 is the 
rating given to item 𝑖𝑖 by user 𝑢𝑢 [24, 43]. As with the 
Pearson coefficient, similarity values produced by 
adjusted cosine similarity range from -1 to 1. 

As with user-based collaborative filtering, this 
implementation includes a Significance Weighting 
factor to devalue correlations with a low number of co-
rated items [23]. Preliminary testing suggested that this 
value be set to 80; after that returns greatly diminish.  

Content-based recommendation 

Content-based recommendation looks at the 
metadata associated with the media for a single user 
and finds similarities [33, 50]. To do this, the algorithm 
requires both extensive knowledge of what is being 
rated and a profile that describes the active user’s 
preferences [8, 24]. “The objects to be recommended 
need to be described so that meaningful learning of 
user preferences can occur” [10]. Unlike collaborative 
filtering, however, the algorithm does not rely on 
knowledge of what others have done in the past. This is 
significant because it allows content-based approaches 
to avoid both the new-item problem, in which a new, or 
obscure, item has no or few ratings and is unable to be 
recommended by a collaborative filter algorithm, and 
the issue of false information, in which fake profiles 
can (intentionally or unintentionally) influence 
recommendations [33]. 

In the simplest cases, the algorithm creates a search 
query to find other popular items based on the content 
of items the active user has previously enjoyed [28, 
33]. There are two main problems with this simple 
form, the first of which is that the algorithm does not 
provide numerical predictions, but binary predictions. 
Furthermore, the algorithm does not scale well, 
providing either too many recommended items or 
reducing the data and providing poorer recom-
mendations [28]. 

More complex algorithms involve assigning weight 
to different pieces of metadata to compare the shows 
the active user has rated to the active item to predict a 
rating for it. However, in systems like that, it becomes 
necessary to know which factors influence a user’s 
ratings the most. Often this information is gathered into 
the profile through something explicit, like a 
questionnaire that is completed before recom-
mendations can be made [35]. The problem has also 
been solved through user profiling systems that pull 
information about the user from social media [26]. 
Without probing the user for more information, the 
recommender is left with only two options: the 
recommender can determine user influences through 
inferring from behavioral data, or the recommender can 
assume every user is the same and use weights that are 
predetermined by the programmer and hard coded into 
the software. This implementation relies on the 
assumption that all users are similar enough in their 
decision making and uses hard coded weights for the 
item features. 
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This project implements a nearest neighbor 
algorithm, also known as a lazy learner, in which the 
rating for the active item is determined from the ratings 
given to the set of most similar items [2, 20, 30, 37].  

Data. Content-based filtering requires only the 
ratings of one user and the content information of the 
anime that user has seen. As with UBCF, the ratings for 
the active user were pulled from the Hummingbird 
API. A synopsis was also pulled from the 
Hummingbird API. All the content information, 
including a synopsis, was pulled from the Anime News 
Network (ANN) Encyclopedia API.  

As needed, XML data for each anime was pulled 
from the ANN Encyclopedia API and saved offline. 
The file was then referenced whenever the anime 
appeared again. The XML data is parsed using 
TinyXML-2 by Lee Thomason.  

At this point, it became clear that not every anime 
in each database could be used. Of course, if 
Hummingbird did not have an anime, it would not be 
referenced in ANN’s Encyclopedia. However, if ANN 
did not have an anime, it could not be used in regards 
to Content-Based Filtering. To maintain consistency, 
these items were also ignored by the other algorithms. 
These “extra” items can be divided into three groups, 
based on why they had issues. The first group was not 
included by ANN because they were made in America, 
and so are not technically anime. The second group 
was removed because they were not full shows, but 
bonus content that ANN decided was not significant 
enough to be considered a separate show/season. The 
final group consisted of movie series that ANN groups, 
but Hummingbird separates. 

In the case of the movie series, the first movie was 
mapped to the entire series on the assumption that if the 
movies are similar enough for ANN to group them, 
then they are similar enough that just getting the rating 
for the first one should be enough. The assumption was 
also made that everyone who has seen one or more of 
the movies in the series has seen the first movie.  

Similarity – hybrid similarity approach. There are 
two forms that data can take: structured and 
unstructured [37, 49]. Structured data is represented by 
a well-defined set of features and corresponding values 
[30, 37, 46, 49]. Unstructured data is represented by 
unrestricted free-text, such as the contents of a 
document [5, 37]. Unsurprisingly, the items in the 
domain of anime contain both structured and 
unstructured data, “as they are represented by features 
as well as full-text descriptions” [49]. To take both the 
unstructured and the structured data into account, a 
hybrid similarity approach [49] was implemented. 

This implementation computes the similarity 
between items by looking at 5 unique categories of 
metadata. The similarity between these aspects of the 
shows was computed and then combined with a 
weighted average. The aspects and corresponding 
weights, as determined through preliminary testing, are 
as follows: 
 Cast – 16%

 Staff – 16%

 Companies – 16%

 Genres – 26%

 Synopsis – 26%

Similarities between structured categories (staff, cast, 
companies, and genres) are determined using the Dice 
Coefficient, a measure of the overlap between sets [19, 
24]. If a category of structured data is defined as a set 
of terms, S, then the similarity between two items, I 
and j, is given by: 

2 × �𝑆𝑆𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗�
|𝑆𝑆𝑖𝑖| + �𝑆𝑆𝑗𝑗�

To compare synopses, term frequency vectors were 
generated. Stop words, common words such as articles 
and prepositions, were omitted from the term vector 
[24, 34]. The list of stopwords used is the default list 
from Ranks NL. Furthermore, terms were stemmed and 
reduced to their root word, via Sean Massung’s 
implementation of the Porter2 English stemming 
algorithm [24, 34, 39]. These vectors were encoded 
with normalized term frequency, a technique used to 
minimize the impact that document length has when 
looking at term frequency [24, 30]. The similarity 
between synopses was computed via the cosine 
similarity (the most commonly used metric) of their 
document vectors [24, 30].  

Issues. Content-based algorithms will have trouble 
when not enough metadata is associated with the items, 
or when the content is hard for a computer to analyze 
[33]. This likely holds true in regards to anime, as the 
metadata affiliated with the show isn’t the same as the 
show’s content. In practical settings, technical 
descriptions of an item, such as genres or creators, are 
usually readily accessible in electronic form, but 
subjective, qualitative features still remain a challenge 
for electronic assessment [24]. This is readily 
demonstrated by the Music Genome Project used by 
Pandora.com to provide content-based music 
recommendations for their listeners [24, 25]. In order to 
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make these recommendations, trained analysts must 
attempt to identify which of 450 distinct characteristics 
are exhibited in each song, a task that takes them 20 to 
30 minutes per song [1, 24]. “These attributes capture 
not only the musical identity of a song, but also the 
many significant qualities that are relevant to 
understanding the musical preferences of listeners” [1]. 
This is an example of the difficulty of applying content 
analysis to art. If it takes 20 to 30 minutes to analyze 3 
to 5 minutes of audio information, then it would be 
unreasonable to suggest applying a similarly thorough 
analysis of anime, where the standard item is about 4 
hours of both audio and visual information.   

Finally, content-based filters lack the ability to give 
recommendations for items that the user may like that 
do not contain content from a user’s profile [33]. “It 
may be that listeners who enjoy free jazz also enjoy 
avant-garde classical music, but a content-based 
recommender trained on the preferences of a free jazz 
aficionado would not be able to suggest items in the 
classical realm since none of the features (performers, 
instruments, repertoire) associated with items in the 
different categories would be shared” [8]. 
Consequently, content-based filtering struggles to 
provide good recommendations for items that are 
unlike any the user has ever seen. When facing these 
issues, collaborative filtering algorithms are superior. 

Hybrid algorithms 

“From a knowledge source perspective, a hybrid 
recommendation is really a matter of combining 
knowledge sources that have not traditionally been put 
together” [11]. In order to get the benefits from both 
systems, many researchers attempt to combine 
Collaborative Filtering with Content Analysis [33].  

A simple approach, sometimes known as a naïve 
hybrid, merely allows the individual methods to work 
separately and merges the results in a hybridization 
step [12, 13]. These algorithms fall into a category 
described as parallelized, consisting of three 
subgroups: weighted, mixed, and switching [8, 24]. 
The separate results can be combined using a weighted 
average that takes into account factors in which one 
algorithm is likely to perform better than the other [8, 
12]. 

Another category of algorithms that require 
individual algorithms to work separately is described as 
pipelined and consists of the passing of output of one 
recommender to the next recommender as input [8, 24]. 

The final category of algorithms is described as 
monolithic; these hybrids “consist of a single 

recommender component that integrates multiple 
approaches by preprocessing and combining several 
knowledge sources” [24]. This group is further divided 
into two subgroups: feature augmentation and feature 
combination [8, 24]. These algorithms do not have to 
worry about the resource concerns that many, but not 
all, of the other algorithms do, as they are not reliant on 
running two separate algorithms [9]. In feature 
augmentation, pre-processing steps are applied by one 
recommendation technique to transform one form 
knowledge source into the knowledge source used by 
the primary recommender technique [8]. In contrast, 
feature combination does not convert one type of 
information to the other but uses both types of 
information to make a recommendation [8].  

Content-boosted collaborative filtering is a good 
example of feature augmentation [8, 9, 24]. The algo-
rithm combats the problem of sparsity common to 
collaborative filtering algorithms by using content 
analysis to determine the “missing” ratings for all of 
the users in a database, before using that database for 
collaborative filtering [32]. This is similar to the idea of 
default voting, the practice of assigning default values 
to items that have not been rated, in order to increase 
the overlap between users [7]; but rather than inserting 
the same value for every user, the algorithm 
personalizes the inserted value. Consequently, content-
boosted collaborative filtering was shown to work 
better than either the naïve hybrid of the two methods 
or using either one alone [32, 33]. While it was 
suspected that this algorithm would work well in the 
domain of anime, the preprocessing step required to fill 
in the missing ratings is incredibly time-consuming. 

This project tested a feature combination algorithm 
that combines item-based collaborative filtering with 
content analysis to solve the same problem addressed 
by content-boosted collaborative filtering. Traditional 
collaborative filtering relies on the ratings of users to 
determine the similarity between items [28], which 
causes problems for obscure items [33]. Even for 
popular items, the way similarity is determined plays a 
large role in the quality of the ratings [29]. Thus, this 
algorithm employed an item-based collaborative 
filtering design that relies on content-based similarity 
when collaborative filtering techniques are believed to 
be untrustworthy. This algorithm should improve the 
measured similarity between items, giving better 
results in general, especially for more obscure titles.  

Similarity. This algorithm uses a combination of 
content-based similarity and item-based collaborative 
similarity based on the number of users that rated both 
items. Preliminary testing suggests that similarities 
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computed with an overlap of 80 or above are reliable, 
while similarities computed with an overlap below 30 
are especially unreliable. Using this information, a 
method was devised to utilize the similarity computed 
through content analysis to make up for possible 
unreliability in the collaborative-based similarity. This 
is formalized in terms of content-based similarity (𝑠𝑠𝑐𝑐𝑐𝑐) 
and collaborative similarity (𝑠𝑠𝑐𝑐𝑐𝑐) as: 

𝑆𝑆(𝑛𝑛) =

⎩
⎨

⎧
𝑠𝑠𝑐𝑐𝑐𝑐 , 𝑛𝑛 ≤ 30

(𝑛𝑛 − 30)𝑠𝑠𝑐𝑐𝑐𝑐 + (80 − 𝑛𝑛)𝑠𝑠𝑐𝑐𝑐𝑐
50

, 30 < 𝑛𝑛 < 80

𝑠𝑠𝑐𝑐𝑐𝑐 , 𝑛𝑛 ≥ 80

 

where 𝑛𝑛 is the amount of overlap. The content-based 
and item-based collaborative similarities are computed 
with the same metrics described previously. 

Rationale. Collaborative filtering algorithms are 
better suited for handling domains where subjective 
preferences come into play. Likewise, they work well 
when it is hard for the items to be analyzed by a 
computer or for metadata to capture the essence of an 
item. In contrast, content-based approaches often lack 
the ability to make a prediction for items that are unlike 
anything the user has previously seen. While item-
based collaborative filtering could potentially fall 
victim to the same weakness, it bases similarity on 
whether users tend to rate the items the same way; thus, 
its similarity is not bound by conventional wisdom or 
intuition. Because of this, collaborative filtering should 
be superior in the domain of anime. Even so, 
collaborative filtering fails when handling items that 
are obscure or unpopular. For items like this, it is 
difficult for collaborative filtering to accurately gauge 
similarity. This is worse than determining with 
certainty that there are no similar items, as these items 
may be included in or omitted from the neighborhood 
inappropriately. 

While item-based similarity seems to be the best 
option for the domain of anime, it lacks reliability in 
many cases. These cases can be adjusted by using 
content-based similarity. However, by not being solely 
reliant on content-based filtering, the algorithm avoids 
inheriting many of its weaknesses, including the 
inability to make predictions for items that are wholly 
dissimilar to the user’s previously seen items. 

Results 

Algorithm MAE NDPM 
User-based Collaborative Filtering 0.5689 0.2826 
Item-based Collaborative Filtering 0.6101 0.3712 

Content-based Filtering 0.6633 0.4702 
Hybrid 0.6109 0.3853 

To collect data, a list of users was compiled that 
exhibited certain qualifications. They had over 20 rated 
items with heterogeneity in ratings (i.e., ratings that 
weren’t all the same), and these ratings were not 
included in the training data used for the collaborative 
algorithms or the set of users used for the preliminary 
testing. This set included 1377 users. Each user had 10 
anime removed at random. A prediction was computed 
for each of those anime by each of the 4 algorithms. 
The mean average error (MAE) was computed for each 
user as seen in the table above. Similarly, the 
normalized distance performance measure (NDPM) 
was used to determine how closely the order of items 
given by the recommender matches the order given by 
the user [45, 48]. These values range from 0 to 1, with 
0 being a perfect match between the user-produced 
ranking and the algorithm-produced ranking. 

Case Users for 
MAE 

Users for 
NDPM 

CBF outperforms IBCF 950 1084.5 
UBCF outperforms 

IBCF 938 956 
HYBRID outperforms 

IBCF 927.5 932.5 
UBCF outperforms 

CBF 858 907.5 
UBCF outperforms 

HYBRID 836.5 888 
CBF outperforms 

HYBRID 
N/A 738 

p < .001 

Furthermore, to compare the overall performances 
of the algorithms, the number of users in which one 
algorithm outperformed another was counted. Using 
the sign test [14, 45], these performances were found to 
be significant with p=0.001. 
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Conclusions 

The data does not support the hypothesis that using 
content information to improve item-based filtering 
would produce the most accurate predictions in the 
domain of anime. Instead, it suggests that user-based 
collaborative filtering is the best algorithm for the 
domain, while item-based collaborative filtering is the 
worst for this domain. Because the hybrid algorithm is 
based on an item-based collaborative filtering 
framework, the hybrid algorithm does not perform 
well. This outperforming of item-based collaborative 
filtering by user-based filtering suggests an error in the 
assumptions regarding the potential pitfalls the domain 
of anime lends to user-based collaborative filtering. It 
is likely that this error comes from the high item to user 
ratio. Because each anime has fewer ratings than each 
user has, it is easier to find similar users than similar 
anime. This leads to better performance by user-based 
collaborative filtering. 

It is significant to note that the hybrid algorithm 
did perform better than the item-based collaborative 
filter. This supports the idea that combining content 
analysis with collaborative filtering will improve the 
predictions made by the collaborative filter. Along the 
same line, while the content-based algorithm 
outperformed both the item-based collaborative filter 
and the hybrid algorithm, overall it had larger errors 
and worse ranking ability than those two algorithms. 
This suggests that, while it can successfully outperform 
other algorithms in many cases, in cases where it fails, 
it fails worse than other algorithms. Thus, one should 
be skeptical of its utility. 

Future work should attempt to exploit the large 
average number of anime rated by users through 
improved user-based collaborative filtering. This 
algorithm could potentially be improved by content 
analysis. Furthermore, the domain itself has more areas 
to be explored. Not only do users assign ratings to 
anime they have seen, but many users have information 
on whether they are currently watching the show, have 
completed the show, have stopped watching the show 
part way through, and what shows they plan to watch. 
This additional domain information is worth 
considering in future research. 
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