
Vol. 2(2), 2017

Article Title: Combining Content Information with an Item-Based Collaborative Filter
DOI: 10.21081/AX0126
ISSN: 2381-800X
Key Words: algorithms, anime, collaborative filtering, content analysis, recommendation
This work is licensed under a Creative Commons Attribution 4.0 International License.
Author contact information is available from the Editor at editor@alphachihonor.org.

Aletheia—The Alpha Chi Journal of Undergraduate Scholarship

• This publication is an online, peer-reviewed, interdisciplinary undergraduate journal, whose
mission is to promote high quality research and scholarship among undergraduates by showcasing
exemplary work.

• Submissions can be in any basic or applied field of study, including the physical and life sciences,
the social sciences, the humanities, education, engineering, and the arts.

• Publication in Aletheia will recognize students who excel academically and foster mentor/mentee
relationships between faculty and students.

• In keeping with the strong tradition of student involvement in all levels of Alpha Chi, the journal
will also provide a forum for students to become actively involved in the writing, peer review, and
publication process.

• More information and instructions for authors is available under the publications tab at
www.AlphaChiHonor.org. Questions to the editor may be directed to editor@alphachihonor.org.

Alpha Chi is a national college honor society that admits students from all academic disciplines, with
membership limited to the top 10 percent of an institution’s juniors, seniors, and graduate students.
Invitation to membership comes only through an institutional chapter. A college seeking a chapter
must grant baccalaureate degrees and be regionally accredited. Some 300 chapters, located in almost
every state, induct approximately 12,000 members annually. Alpha Chi members have been “making
scholarship effective for good” since 1922.

Volume 2 │ Issue 2 │ 2017

Combining Content Information with an Item-Based Collaborative Filter

Daryl Bagley
Harding University

Arkansas Eta Chapter

22017

Article Title: Combining Content Information with an Item-Based Collaborative Filter
DOI: 10.21081/AX0126
ISSN: 2381-800X
This work is licensed under a Creative Commons Attribution 4.0 International License.

Volume 2 │ Issue 2 │ Fall 2017

Combining Content Information with an Item-Based Collaborative Filter

Daryl Bagley
Harding University

Arkansas Eta Chapter

Abstract

	 This paper describes an attempt to use content information to improve an item-based collaborative filter
for recommending anime. A recommendation engine is a system with the goal of determining how a user
would rate an item in the database based on how he/she has rated previous items. Recommendation engines
are classified based on the additional information they use to make predictions. Content information and
social information are two common sources of information used by a recommender. Content-based recom-
menders use information about the items in the database and look at the similarity between items that the
user has seen and the item it is trying to evaluate. Collaborative filters look at ratings from other users and
find similarities between the user’s ratings and other users’ ratings in either a user-to-user comparison or an
item-to-item comparison. This paper looks at a content-based filter, a user-based collaborative filter, and an
item-based collaborative filter implemented to work in the domain of anime and compares that to a hybrid
implementation that uses both content and collaborative information. As expected, this project found that the
hybrid implementation showed an improvement over the item-based collaborative filtering implementation.
However, item-based collaborative filtering was shown to perform worse in the domain than user-based
collaborative filtering, which was the best implementation for the domain.

Key words: algorithms, anime, collaborative filtering, content analysis, recommendation

Introduction

Currently, there exist over 7,000 anime, including TV
series, original animation videos, movies, and original
net anime, with hundreds of new anime being produced
each year [16]. For simplicity’s sake, anime is often de-
fined as animation made in Japan [31, 38]. “Anime is
a form of visual culture and media, as well as a type of
popular entertainment, a commercial product, an object
of interest, and sometimes an obsession” [36]. Advanc-
es in information technology give individuals access to
more information and media than ever before, creating
an issue in recommendation and discovery: how does an

anime fan decide what to watch next [18]? In the past,
people relied on recommendations via word of mouth
or published through the media [41], but since the early
1990s algorithms have been created that allow software
to be able to fill this void, providing personalized recom-
mendations based on large amounts of data [24, 33, 42].
	 The term “recommender system” describes “any
system that produces individualized recommendations
as output or has the effect of guiding the user in a per-
sonalized way to interesting or useful objects in a large
space of possible options” [8]. The goal of a recom-
mender system is to determine items or products that
may interest the users of the system [33]. In this paper,

the terms “recommendation engine,” “recommendation
system,” and “recommender system” have the same
meaning and will be used interchangeably. The
individual for whom the recommendation is made is
known as the “active user,” and the item for which a
prediction is made is known as the “active item.”

The goal of this project was to design and test a
solution for the task of accurately predicting a rating
for any given item in the data set. The design of a
recommendation engine depends on the domain and the
characteristics of the available data [33]. While large
companies such as Netflix are able to gather vast and
detailed amounts of data for large numbers of users,
including when viewers pause, fast forward, or rewind;
what devices they are using to stream; and what time of
day they are watching [22], it is not always possible to
make recommendations based on large amounts of
implicit data, nor should users be required to give out
large amounts of information to get accurate recom-
mendations. In the anime industry, this is especially
true, as a single individual may use several streaming
sites, preventing any one service from getting an
accurate portrayal of the user’s preferences. Thus, the
data used in this project is limited to what can be pulled
from user-submitted sources and does not contain any
metadata on the users. This allows users to remain
completely anonymous. Instead, it contains lists of
items (anime) for each user, along with the user’s
ratings (on a scale of 0.5 to 5.0, at intervals of .5) for
the anime on the list.

The results of this project may be generalized
beyond anime and applied to other areas with similar
data sets. Furthermore, this project attempts to explain
a viable but less common algorithm in addition to
confirming existing knowledge of common algorithms.

The Domain

“A domain of recommendation is the set of items
that the recommender will operate over, but may also
include the set of aims or purposes that the
recommender is intended to support” [11]. Typical
domains include books, movies, TV, music, products,
and documents. “One lesson that has been learned over
the past years of recommender systems research is that
the application domain exerts a strong influence over
the types of methods that can be successfully applied”
[10]. One of the unique aspects of this research is that
the algorithms will be applied to an uncommon
domain. The domain of anime is comparable to a
combination of the domain of movies and the domain
of TV but has some notable differences. Because the

choice of a recommendation algorithm is dependent
upon the domain, even the small differences exhibited
by this domain can have a large impact on the
applicability of a given algorithm.

Domains have six characteristics that can influence
the choice and success of an algorithm: heterogeneity,
risk, churn, interaction style, preference stability, and
scrutability [11]. The domain used in this project has
mid to low heterogeneity, meaning that the items in the
database, while quite varied, all have similar purposes
and satisfy similar goals. The domain has low risk, as a
user does not lose much by accepting a recom-
mendation. The domain also has low churn, as most
items that are available at some point remain available
for long periods of time. The domain has an explicit
interaction style, as users are specifically searching for
something to watch, and the primary means of
determining the user’s opinion on an item is through
explicit ratings. The domain has fairly high preference
stability, as users are not likely to experience drastic
changes in opinion over short periods of time. Finally,
the domain does not require much scrutability, meaning
a user does not need much of an explanation for how
the prediction was computed.

The Algorithms

The characteristics of the domain place certain
constraints on the kinds of knowledge that a
recommender system can use, while the availability
and quality of knowledge influences what rec-
ommendation technologies a recommender can
profitably use [11]. There are three broad categories of
knowledge (individual, social, and content) that can be
further expanded into subtypes of knowledge, and
algorithms are classified based on what categories of
knowledge they use [3, 11, 17].

While all algorithms use personal knowledge
(knowledge about the active user), they vary in what
subcategories they use. Because of the domain and
available sources of knowledge, this project is
restricted to the use of only opinion information from
the active user. This eliminates many algorithms,
leaving only collaborative and content-based algo-
rithms as viable options. Collaborative algorithms rely
on social knowledge (information about users other
than the active user), while content-based algorithms
rely on item features, a specific form of content
knowledge.

To reach the aforementioned goals, several algo-
rithms were implemented and compared against each
other. These algorithms were user-based collaborative

2017 COMBINING CONTENT WITH A COLLABORATIVE FILTER 3

filtering, item-based collaborative-filtering, content-
based filtering, and a hybrid algorithm involving the
combination of content information with an item-based
collaborative filtering algorithm. The implementation
of common algorithms gives the hybrid algorithm
suitable controls to be compared against, allowing for a
better understanding of its performance.

User-based Collaborative Filtering

Collaborative filtering algorithms are by far the
most researched and mature recommendation technol-
ogies [8, 24]. “Collaborative filtering makes pre-
dictions about an individual’s interests based on the
interests of similar people” [6]. Collaborative filtering
systems rely solely on a large database of past data for
many users [33]. Neighborhood-based collaborative
filtering is characterized by giving a recommendation
based on the weighted combination of the ratings of a
subset of users similar to the active user [33].

Collaborative filtering algorithms can be grouped
into two classes: memory-based algorithms, in which
user data is stored in memory to directly compare
different users, and model-based algorithms, in which
user data is analyzed and a model is derived for making
predictions [7]. Memory-based algorithms, also known
as neighborhood-based algorithms [28, 40], find users
in the database with similar rating patterns to the active
user, known as neighbors, and base the prediction on
the ratings those users assigned to the active item. In
contrast, model-based algorithms attempt to model the
user-item interactions by determining factors repre-
senting latent characteristics of the users in the system
[15]. While research has shown that state-of-the-art
model-based algorithms are superior [27], this project
implements a memory-based algorithm, for a couple
key reasons.

Memory-based algorithms are simpler than model-
based approaches: “In their simplest form, only one
parameter (the number of neighbors used in the
prediction) requires tuning” [15]. Compounding this is
the fact that memory-based algorithms are efficient,
requiring no costly training phase [15]. These factors
make model-based algorithms easier to implement and
more intuitive, which is why this type of algorithm was
chosen for this project.
The algorithm computes a prediction for the active
anime by comparing the active user to all the users in
the database who have rated the active item to
determine which are the most similar. Then the ratings
given by the nearest neighbors are combined into a
weighted average, which forms the prediction given by

the algorithm. The weight used for the weighted
average is the similarity. Preliminary testing showed
that the optimal number of neighbors for the algorithm
is 11. This means that only the ratings of the 11 users
that are most like the active user will be used to
determine the prediction.

Data. To implement a collaborative filtering algo-
rithm, it is necessary to acquire a database of user
ratings. This data was collected from Hummingbird.me,
a free website that allows its users to keep track of
what they have watched. The API provided by
Hummingbird gives applications access to information
about users’ libraries, which includes a list of anime
rated by the owner of the library. Random users were
pulled from the Hummingbird API, and their library
information was saved to a text file to be read in at the
beginning of the algorithm.

It was decided that the number of ratings in the
database should be close to 300k, with the actual
number being 299,968. Because anime is such a niche
domain, the number of anime fans are relatively few
but are quite devoted. Consequently, the domain for
this project uses data where the number of items is
much larger than the number of users. This is in
contrast to the typical data set, which involves many
more users than items [24]. There are 2698 users in the
database, having rated, on average, 111 items each, and
7788 items in the database, having been rated 38.5
times each, on average. Thus, the sparsity of the data
set is 0.9857, which is standard for a typical data set
[24].

Similarity – Pearson correlation coefficient. The
most common way of determining similarity (𝑤𝑤)
between the active user (𝑎𝑎) and a given user (𝑢𝑢) is
through the Pearson coefficient, defined as:

𝑤𝑤𝑎𝑎,𝑢𝑢 =
∑ (𝑟𝑟𝑎𝑎,𝑖𝑖 − 𝑟̅𝑟𝑎𝑎)(𝑟𝑟𝑢𝑢,𝑖𝑖 − 𝑟̅𝑟𝑢𝑢)𝑖𝑖∈𝐼𝐼

�∑ (𝑟𝑟𝑎𝑎,𝑖𝑖 − 𝑟̅𝑟𝑎𝑎)2 ∑ (𝑟𝑟𝑢𝑢,𝑖𝑖 − 𝑟̅𝑟𝑢𝑢)2𝑖𝑖∈𝐼𝐼𝑖𝑖∈𝐼𝐼

where 𝐼𝐼 is the set of items rated by both users, 𝑟𝑟𝑢𝑢 is the
average rating given by user 𝑢𝑢, and 𝑟𝑟𝑢𝑢,𝑖𝑖 is the rating
given to item 𝑖𝑖 by user 𝑢𝑢 [4, 40]. This equation
compares the ratings of each user on all the items the
users have in common. The output is a value between -
1 and 1, with -1 representing complete disagreement, 1
representing complete agreement, and 0 representing
no relation. The Pearson correlation coefficient also
accounts for the fact that different users may be using
different rating scales.

There have been other similarity measures tested
in the past, including Spearman rank correlation,
Kendall’s τ correlation, mean squared differences,

2017 COMBINING CONTENT WITH A COLLABORATIVE FILTER 4

entropy, cosine similarity, and adjusted cosine simi-
larity [7, 23, 47]. Nevertheless, the Pearson coefficient
remains the most popular method of determining the
similarity between users and has empirically been
shown to outperform cosine similarity [7, 23]. Thus,
this project utilizes the Pearson correlation coefficient
to determine the similarity between users.

In addition, while research has suggested that
negative correlations are not valuable in increasing
prediction accuracy [23, 24], this project uses the most
highly correlated users, even if the correlation is
negative. Because some items may not have many
ratings, it was decided that it was not worth the risk to
eliminate highly correlated users based on the
correlation being negative.

Because it is possible for users to appear similar
based on only a few items in common, the algorithm
implements a Significance Weighting factor, which
devalues correlations based on the number of co-rated
items [23]. Preliminary testing showed that the optimal
value for the number of co-rated items is 240. Thus, if
two users have less than 240 items in common, the
similarity is divided by 240 and multiplied by the
number of co-rated items. If the two users have 240 or
more co-rated items, the similarity is not modified.

Issues. The domain of anime may not be optimal
for a collaborative filtering algorithm. A domain should
have certain qualities to make collaborative filtering a
good fit [44]. First, there may be issues with the data
distribution. A suitable domain for collaborative
filtering should have many ratings per item, often
requiring more users than items [44]. However, this
domain has a lot of niche items that are not rated by
many users. While an average of 38.5 ratings per item
is already low, compared to typical data sets [24], the
data set used for this algorithm contains 3400 items
with fewer than 5 ratings. This is in stark contrast to the
70 items in the database with over 500 ratings.
Furthermore, the data set contains more items than it
does users, and while this may not be indicative of the
domain as a whole, it has the potential to be
problematic.

Likewise, in a suitable domain for collaborative
filtering, items should be homogenous; every item in
the database should be identical by all objective
criteria, differing only in subjective criteria [44]. The
rationale for this is that collaborative filtering is the
most valuable when evaluation of items is done in a
subjective measure [44]. While this largely holds true
in the domain of anime, the most notable exception is
in the case of the length of the item. The database
includes everything from movies that last roughly an

hour to long-running TV shows that have hundreds of
episodes.

One of the biggest issues concerning user-based
collaborative filtering is scalability, the ability to
continue functioning well when working with large
data sets [28, 33]. To find the most similar users in the
data set, collaborative filtering must check every user
that has rated the active anime as well as every item
both users rated. While the worst case scenario, in
which every user has rated every item, nets this
algorithm a complexity of O(NM), where M is the
number of users and N the number of items, the
algorithm’s performance is closer to O(M + N) due to
the fact that although the algorithm has to cycle
through all of the available users, a large majority of
those users will have rated only a few items, regardless
of the number of items in the catalog [28]. Techniques
for sampling are able to reduce the data set by a large
factor in order to reduce the performance issues [21],
but these techniques can reduce recommendation
quality [28]. While the data set this project worked
with is not as large as the sets used by major
companies, there was still some lag in generating
recommendations with this algorithm. However, no
dimensionality reduction techniques were
implemented, as the value of implementing one would
not be worth the cost.

Item-based collaborative filtering

In 2003, item-to-item collaborative filtering was
proposed as a solution to the scalability issues faced by
user-based collaborative filtering when working with
the tens of millions of users Amazon has [28]. The
algorithm uses similarity between individual items,
rather than the similarity between users, to make
recommendations [28, 43]. As a model-based collab-
orative filtering algorithm, the ratings are used to
compute and store the similarity offline, and the stored
similarity calculations form the model with which
predictions are made [43]. The similarity is computed
by looking at the ratings given to the compared items
by every user that rated both items [28, 33, 43]. While
the worst case complexity is O(N2M), in practice, not
all item pairs are actually seen, so the complexity is
actually closer to O(NM) [28]. The complexity of the
online component of the algorithm is dependent only
on how many items the active user has rated [28]. In
theory, off-line similarity computation is possible with
user-based filtering, but because the number of
overlapping items between any two users is generally
small, a few ratings can make a large difference on the

2017 COMBINING CONTENT WITH A COLLABORATIVE FILTER 5

computed similarity; in contrast, the similarity between
items remains fairly stable, keeping accuracy from
being lost [43]. The predicted rating for an item can be
calculated with a weighted average. This approach has
been shown to lead to faster online systems [28] and
improved recommendations [43], even when faced
with limited user data [28], compared to user-based
collaborative filtering.

Data. The item-based collaborative filtering
implementation computed the item similarities from the
same data used by the user-based collaborative filtering
algorithm. 11,352,376 co-rated pairs were found, out of
30,314,790 possible pairs. The similarities were
computed offline and each item got a separate text file
of similarities so that the algorithm must only load one
file at a time, instead of all computed similarities at the
beginning of the program. However, as a result, every
similarity was listed on both applicable files, doubling
the amount of necessary reading in the case that every
item is recommended.

Similarity – adjusted cosine similarity. Cosine-
based similarity is a common measure of similarity in
which two items are thought of as vectors with the
number of users having rated both items as the number
of dimensions [28, 43]. “In item-based recommend-
ation approaches, cosine similarity is established as the
standard metric, as it has been shown that it produces
the most accurate results” [24]. The cosine between the
vectors can then be computed and used as similarity.
Adjusted cosine similarity takes into account the fact
that not all users rate on the same scale by subtracting
the corresponding user average from each co-rated pair
[24, 43]. Thus, the similarity between items I and j is
given by:

𝑠𝑠𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗) =
∑ (𝑅𝑅𝑢𝑢,𝑖𝑖 − 𝑅𝑅�𝑢𝑢)(𝑅𝑅𝑢𝑢,𝑗𝑗 − 𝑅𝑅�𝑢𝑢)𝑢𝑢∈𝑈𝑈

�∑ (𝑅𝑅𝑢𝑢,𝑖𝑖 − 𝑅𝑅�𝑢𝑢)2𝑢𝑢∈𝑈𝑈 �∑ (𝑅𝑅𝑢𝑢,𝑗𝑗 − 𝑅𝑅�𝑢𝑢)2𝑢𝑢∈𝑈𝑈

where 𝑈𝑈 is the set of items rated by both users, 𝑅𝑅𝑢𝑢 is
the average rating given by user 𝑢𝑢, and 𝑅𝑅𝑢𝑢,𝑖𝑖 is the
rating given to item 𝑖𝑖 by user 𝑢𝑢 [24, 43]. As with the
Pearson coefficient, similarity values produced by
adjusted cosine similarity range from -1 to 1.

As with user-based collaborative filtering, this
implementation includes a Significance Weighting
factor to devalue correlations with a low number of co-
rated items [23]. Preliminary testing suggested that this
value be set to 80; after that returns greatly diminish.

Content-based recommendation

Content-based recommendation looks at the
metadata associated with the media for a single user
and finds similarities [33, 50]. To do this, the algorithm
requires both extensive knowledge of what is being
rated and a profile that describes the active user’s
preferences [8, 24]. “The objects to be recommended
need to be described so that meaningful learning of
user preferences can occur” [10]. Unlike collaborative
filtering, however, the algorithm does not rely on
knowledge of what others have done in the past. This is
significant because it allows content-based approaches
to avoid both the new-item problem, in which a new, or
obscure, item has no or few ratings and is unable to be
recommended by a collaborative filter algorithm, and
the issue of false information, in which fake profiles
can (intentionally or unintentionally) influence
recommendations [33].

In the simplest cases, the algorithm creates a search
query to find other popular items based on the content
of items the active user has previously enjoyed [28,
33]. There are two main problems with this simple
form, the first of which is that the algorithm does not
provide numerical predictions, but binary predictions.
Furthermore, the algorithm does not scale well,
providing either too many recommended items or
reducing the data and providing poorer recom-
mendations [28].

More complex algorithms involve assigning weight
to different pieces of metadata to compare the shows
the active user has rated to the active item to predict a
rating for it. However, in systems like that, it becomes
necessary to know which factors influence a user’s
ratings the most. Often this information is gathered into
the profile through something explicit, like a
questionnaire that is completed before recom-
mendations can be made [35]. The problem has also
been solved through user profiling systems that pull
information about the user from social media [26].
Without probing the user for more information, the
recommender is left with only two options: the
recommender can determine user influences through
inferring from behavioral data, or the recommender can
assume every user is the same and use weights that are
predetermined by the programmer and hard coded into
the software. This implementation relies on the
assumption that all users are similar enough in their
decision making and uses hard coded weights for the
item features.

2017 COMBINING CONTENT WITH A COLLABORATIVE FILTER 6

This project implements a nearest neighbor
algorithm, also known as a lazy learner, in which the
rating for the active item is determined from the ratings
given to the set of most similar items [2, 20, 30, 37].

Data. Content-based filtering requires only the
ratings of one user and the content information of the
anime that user has seen. As with UBCF, the ratings for
the active user were pulled from the Hummingbird
API. A synopsis was also pulled from the
Hummingbird API. All the content information,
including a synopsis, was pulled from the Anime News
Network (ANN) Encyclopedia API.

As needed, XML data for each anime was pulled
from the ANN Encyclopedia API and saved offline.
The file was then referenced whenever the anime
appeared again. The XML data is parsed using
TinyXML-2 by Lee Thomason.

At this point, it became clear that not every anime
in each database could be used. Of course, if
Hummingbird did not have an anime, it would not be
referenced in ANN’s Encyclopedia. However, if ANN
did not have an anime, it could not be used in regards
to Content-Based Filtering. To maintain consistency,
these items were also ignored by the other algorithms.
These “extra” items can be divided into three groups,
based on why they had issues. The first group was not
included by ANN because they were made in America,
and so are not technically anime. The second group
was removed because they were not full shows, but
bonus content that ANN decided was not significant
enough to be considered a separate show/season. The
final group consisted of movie series that ANN groups,
but Hummingbird separates.

In the case of the movie series, the first movie was
mapped to the entire series on the assumption that if the
movies are similar enough for ANN to group them,
then they are similar enough that just getting the rating
for the first one should be enough. The assumption was
also made that everyone who has seen one or more of
the movies in the series has seen the first movie.

Similarity – hybrid similarity approach. There are
two forms that data can take: structured and
unstructured [37, 49]. Structured data is represented by
a well-defined set of features and corresponding values
[30, 37, 46, 49]. Unstructured data is represented by
unrestricted free-text, such as the contents of a
document [5, 37]. Unsurprisingly, the items in the
domain of anime contain both structured and
unstructured data, “as they are represented by features
as well as full-text descriptions” [49]. To take both the
unstructured and the structured data into account, a
hybrid similarity approach [49] was implemented.

This implementation computes the similarity
between items by looking at 5 unique categories of
metadata. The similarity between these aspects of the
shows was computed and then combined with a
weighted average. The aspects and corresponding
weights, as determined through preliminary testing, are
as follows:
 Cast – 16%

 Staff – 16%

 Companies – 16%

 Genres – 26%

 Synopsis – 26%

Similarities between structured categories (staff, cast,
companies, and genres) are determined using the Dice
Coefficient, a measure of the overlap between sets [19,
24]. If a category of structured data is defined as a set
of terms, S, then the similarity between two items, I
and j, is given by:

2 × �𝑆𝑆𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗�
|𝑆𝑆𝑖𝑖| + �𝑆𝑆𝑗𝑗�

To compare synopses, term frequency vectors were
generated. Stop words, common words such as articles
and prepositions, were omitted from the term vector
[24, 34]. The list of stopwords used is the default list
from Ranks NL. Furthermore, terms were stemmed and
reduced to their root word, via Sean Massung’s
implementation of the Porter2 English stemming
algorithm [24, 34, 39]. These vectors were encoded
with normalized term frequency, a technique used to
minimize the impact that document length has when
looking at term frequency [24, 30]. The similarity
between synopses was computed via the cosine
similarity (the most commonly used metric) of their
document vectors [24, 30].

Issues. Content-based algorithms will have trouble
when not enough metadata is associated with the items,
or when the content is hard for a computer to analyze
[33]. This likely holds true in regards to anime, as the
metadata affiliated with the show isn’t the same as the
show’s content. In practical settings, technical
descriptions of an item, such as genres or creators, are
usually readily accessible in electronic form, but
subjective, qualitative features still remain a challenge
for electronic assessment [24]. This is readily
demonstrated by the Music Genome Project used by
Pandora.com to provide content-based music
recommendations for their listeners [24, 25]. In order to

2017 COMBINING CONTENT WITH A COLLABORATIVE FILTER 7

make these recommendations, trained analysts must
attempt to identify which of 450 distinct characteristics
are exhibited in each song, a task that takes them 20 to
30 minutes per song [1, 24]. “These attributes capture
not only the musical identity of a song, but also the
many significant qualities that are relevant to
understanding the musical preferences of listeners” [1].
This is an example of the difficulty of applying content
analysis to art. If it takes 20 to 30 minutes to analyze 3
to 5 minutes of audio information, then it would be
unreasonable to suggest applying a similarly thorough
analysis of anime, where the standard item is about 4
hours of both audio and visual information.

Finally, content-based filters lack the ability to give
recommendations for items that the user may like that
do not contain content from a user’s profile [33]. “It
may be that listeners who enjoy free jazz also enjoy
avant-garde classical music, but a content-based
recommender trained on the preferences of a free jazz
aficionado would not be able to suggest items in the
classical realm since none of the features (performers,
instruments, repertoire) associated with items in the
different categories would be shared” [8].
Consequently, content-based filtering struggles to
provide good recommendations for items that are
unlike any the user has ever seen. When facing these
issues, collaborative filtering algorithms are superior.

Hybrid algorithms

“From a knowledge source perspective, a hybrid
recommendation is really a matter of combining
knowledge sources that have not traditionally been put
together” [11]. In order to get the benefits from both
systems, many researchers attempt to combine
Collaborative Filtering with Content Analysis [33].

A simple approach, sometimes known as a naïve
hybrid, merely allows the individual methods to work
separately and merges the results in a hybridization
step [12, 13]. These algorithms fall into a category
described as parallelized, consisting of three
subgroups: weighted, mixed, and switching [8, 24].
The separate results can be combined using a weighted
average that takes into account factors in which one
algorithm is likely to perform better than the other [8,
12].

Another category of algorithms that require
individual algorithms to work separately is described as
pipelined and consists of the passing of output of one
recommender to the next recommender as input [8, 24].

The final category of algorithms is described as
monolithic; these hybrids “consist of a single

recommender component that integrates multiple
approaches by preprocessing and combining several
knowledge sources” [24]. This group is further divided
into two subgroups: feature augmentation and feature
combination [8, 24]. These algorithms do not have to
worry about the resource concerns that many, but not
all, of the other algorithms do, as they are not reliant on
running two separate algorithms [9]. In feature
augmentation, pre-processing steps are applied by one
recommendation technique to transform one form
knowledge source into the knowledge source used by
the primary recommender technique [8]. In contrast,
feature combination does not convert one type of
information to the other but uses both types of
information to make a recommendation [8].

Content-boosted collaborative filtering is a good
example of feature augmentation [8, 9, 24]. The algo-
rithm combats the problem of sparsity common to
collaborative filtering algorithms by using content
analysis to determine the “missing” ratings for all of
the users in a database, before using that database for
collaborative filtering [32]. This is similar to the idea of
default voting, the practice of assigning default values
to items that have not been rated, in order to increase
the overlap between users [7]; but rather than inserting
the same value for every user, the algorithm
personalizes the inserted value. Consequently, content-
boosted collaborative filtering was shown to work
better than either the naïve hybrid of the two methods
or using either one alone [32, 33]. While it was
suspected that this algorithm would work well in the
domain of anime, the preprocessing step required to fill
in the missing ratings is incredibly time-consuming.

This project tested a feature combination algorithm
that combines item-based collaborative filtering with
content analysis to solve the same problem addressed
by content-boosted collaborative filtering. Traditional
collaborative filtering relies on the ratings of users to
determine the similarity between items [28], which
causes problems for obscure items [33]. Even for
popular items, the way similarity is determined plays a
large role in the quality of the ratings [29]. Thus, this
algorithm employed an item-based collaborative
filtering design that relies on content-based similarity
when collaborative filtering techniques are believed to
be untrustworthy. This algorithm should improve the
measured similarity between items, giving better
results in general, especially for more obscure titles.

Similarity. This algorithm uses a combination of
content-based similarity and item-based collaborative
similarity based on the number of users that rated both
items. Preliminary testing suggests that similarities

2017 COMBINING CONTENT WITH A COLLABORATIVE FILTER 8

computed with an overlap of 80 or above are reliable,
while similarities computed with an overlap below 30
are especially unreliable. Using this information, a
method was devised to utilize the similarity computed
through content analysis to make up for possible
unreliability in the collaborative-based similarity. This
is formalized in terms of content-based similarity (𝑠𝑠𝑐𝑐𝑐𝑐)
and collaborative similarity (𝑠𝑠𝑐𝑐𝑐𝑐) as:

𝑆𝑆(𝑛𝑛) =

⎩
⎨

⎧
𝑠𝑠𝑐𝑐𝑐𝑐 , 𝑛𝑛 ≤ 30

(𝑛𝑛 − 30)𝑠𝑠𝑐𝑐𝑐𝑐 + (80 − 𝑛𝑛)𝑠𝑠𝑐𝑐𝑐𝑐
50

, 30 < 𝑛𝑛 < 80

𝑠𝑠𝑐𝑐𝑐𝑐 , 𝑛𝑛 ≥ 80

where 𝑛𝑛 is the amount of overlap. The content-based
and item-based collaborative similarities are computed
with the same metrics described previously.

Rationale. Collaborative filtering algorithms are
better suited for handling domains where subjective
preferences come into play. Likewise, they work well
when it is hard for the items to be analyzed by a
computer or for metadata to capture the essence of an
item. In contrast, content-based approaches often lack
the ability to make a prediction for items that are unlike
anything the user has previously seen. While item-
based collaborative filtering could potentially fall
victim to the same weakness, it bases similarity on
whether users tend to rate the items the same way; thus,
its similarity is not bound by conventional wisdom or
intuition. Because of this, collaborative filtering should
be superior in the domain of anime. Even so,
collaborative filtering fails when handling items that
are obscure or unpopular. For items like this, it is
difficult for collaborative filtering to accurately gauge
similarity. This is worse than determining with
certainty that there are no similar items, as these items
may be included in or omitted from the neighborhood
inappropriately.

While item-based similarity seems to be the best
option for the domain of anime, it lacks reliability in
many cases. These cases can be adjusted by using
content-based similarity. However, by not being solely
reliant on content-based filtering, the algorithm avoids
inheriting many of its weaknesses, including the
inability to make predictions for items that are wholly
dissimilar to the user’s previously seen items.

Results

Algorithm MAE NDPM
User-based Collaborative Filtering 0.5689 0.2826
Item-based Collaborative Filtering 0.6101 0.3712

Content-based Filtering 0.6633 0.4702
Hybrid 0.6109 0.3853

To collect data, a list of users was compiled that
exhibited certain qualifications. They had over 20 rated
items with heterogeneity in ratings (i.e., ratings that
weren’t all the same), and these ratings were not
included in the training data used for the collaborative
algorithms or the set of users used for the preliminary
testing. This set included 1377 users. Each user had 10
anime removed at random. A prediction was computed
for each of those anime by each of the 4 algorithms.
The mean average error (MAE) was computed for each
user as seen in the table above. Similarly, the
normalized distance performance measure (NDPM)
was used to determine how closely the order of items
given by the recommender matches the order given by
the user [45, 48]. These values range from 0 to 1, with
0 being a perfect match between the user-produced
ranking and the algorithm-produced ranking.

Case Users for
MAE

Users for
NDPM

CBF outperforms IBCF 950 1084.5
UBCF outperforms

IBCF 938 956
HYBRID outperforms

IBCF 927.5 932.5
UBCF outperforms

CBF 858 907.5
UBCF outperforms

HYBRID 836.5 888
CBF outperforms

HYBRID
N/A 738

p < .001

Furthermore, to compare the overall performances
of the algorithms, the number of users in which one
algorithm outperformed another was counted. Using
the sign test [14, 45], these performances were found to
be significant with p=0.001.

2017 COMBINING CONTENT WITH A COLLABORATIVE FILTER 9

Conclusions

The data does not support the hypothesis that using
content information to improve item-based filtering
would produce the most accurate predictions in the
domain of anime. Instead, it suggests that user-based
collaborative filtering is the best algorithm for the
domain, while item-based collaborative filtering is the
worst for this domain. Because the hybrid algorithm is
based on an item-based collaborative filtering
framework, the hybrid algorithm does not perform
well. This outperforming of item-based collaborative
filtering by user-based filtering suggests an error in the
assumptions regarding the potential pitfalls the domain
of anime lends to user-based collaborative filtering. It
is likely that this error comes from the high item to user
ratio. Because each anime has fewer ratings than each
user has, it is easier to find similar users than similar
anime. This leads to better performance by user-based
collaborative filtering.

It is significant to note that the hybrid algorithm
did perform better than the item-based collaborative
filter. This supports the idea that combining content
analysis with collaborative filtering will improve the
predictions made by the collaborative filter. Along the
same line, while the content-based algorithm
outperformed both the item-based collaborative filter
and the hybrid algorithm, overall it had larger errors
and worse ranking ability than those two algorithms.
This suggests that, while it can successfully outperform
other algorithms in many cases, in cases where it fails,
it fails worse than other algorithms. Thus, one should
be skeptical of its utility.

Future work should attempt to exploit the large
average number of anime rated by users through
improved user-based collaborative filtering. This
algorithm could potentially be improved by content
analysis. Furthermore, the domain itself has more areas
to be explored. Not only do users assign ratings to
anime they have seen, but many users have information
on whether they are currently watching the show, have
completed the show, have stopped watching the show
part way through, and what shows they plan to watch.
This additional domain information is worth
considering in future research.

2017 COMBINING CONTENT WITH A COLLABORATIVE FILTER 10

Works Cited

[1] About The Music Genome Project®:

http://www.pandora.com/about/mgp. Accessed: 2016-
06-17.

[2] Adomavicius, G., Sankaranarayanan, R., Sen, S. and
Tuzhilin, A. 2005. Incorporating contextual
information in recommender systems using a
multidimensional approach. ACM Transactions on
Information Systems. 23, 1 (Jan. 2005), 103–145.
DOI:https://doi.org/10.1145/1055709.1055714.

[3] Adomavicius, G. and Tuzhilin, A. 2005. Toward the
Next Generation of Recommender Systems: A Survey
of the State-of-the-Art and Possible Extensions. IEEE
Trans. on Knowl. and Data Eng. 17, 6 (Jun. 2005),
734–749. DOI:https://doi.org/10.1109/TKDE.2005.99.

[4] Amatriain, X., Jaimes, A., Oliver, N. and Pujol, J.M.
2011. Data Mining Methods for Recommender
Systems. Recommender Systems Handbook. F. Ricci,
L. Rokach, B. Shapira, and P.B. Kantor, eds. Springer
US. 39–71.

[5] Balabanović, M. and Shoham, Y. 1997. Fab: Content-
based, Collaborative Recommendation. Commun.
ACM. 40, 3 (Mar. 1997), 66–72.
DOI:https://doi.org/10.1145/245108.245124.

[6] Boulton, J. 2014. Collaborative Filtering. 100 ideas
that changed the web. Laurence King Publishing.

[7] Breese, J.S., Heckerman, D. and Kadie, C. 1998.
Empirical Analysis of Predictive Algorithms for
Collaborative Filtering. Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence
(San Francisco, CA, USA, 1998), 43–52.

[8] Burke, R. 2002. Hybrid Recommender Systems:
Survey and Experiments. User Modeling and User-
Adapted Interaction. 12, 4 (Nov. 2002), 331–370.
DOI:https://doi.org/10.1023/A:1021240730564.

[9] Burke, R. 2007. Hybrid Web Recommender Systems.
The Adaptive Web. P. Brusilovsky, A. Kobsa, and W.
Nejdl, eds. Springer Berlin Heidelberg. 377–408.

[10] Burke, R., Felfernig, A. and Göker, M.H. 2011.
Recommender Systems: An Overview. AI Magazine.
32, 3 (Jun. 2011), 13–18.
DOI:https://doi.org/10.1609/aimag.v32i3.2361.

[11] Burke, R. and Ramezani, M. 2011. Matching
Recommendation Technologies and Domains.
Recommender Systems Handbook. F. Ricci, L.
Rokach, B. Shapira, and P.B. Kantor, eds. Springer
US. 367–386.

[12] Claypool, M., Gokhale, A., Miranda, T., Murnikov, P.,
Netes, D. and Sartin, M. 1999. Combining Content-
Based and Collaborative Filters in an Online
Newspaper.

[13] Cotter, P. and Smyth, B. 2000. PTV: Intelligent
Personalised TV Guides. Proceedings of the
Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on Innovative

Applications of Artificial Intelligence (2000), 957–
964.

[14] Demšar, J. 2006. Statistical Comparisons of Classifiers
over Multiple Data Sets. J. Mach. Learn. Res. 7, (Dec.
2006), 1–30.

[15] Desrosiers, C. and Karypis, G. 2011. A
Comprehensive Survey of Neighborhood-based
Recommendation Methods. Recommender Systems
Handbook. F. Ricci, L. Rokach, B. Shapira, and P.B.
Kantor, eds. Springer US. 107–144.

[16] Encyclopedia - Anime News Network:
http://www.animenewsnetwork.com/encyclopedia/.
Accessed: 2016-05-11.

[17] Felfernig, A. and Burke, R. 2008. Constraint-based
Recommender Systems: Technologies and Research
Issues. Proceedings of the 10th International
Conference on Electronic Commerce (New York, NY,
USA, 2008), 3:1–3:10.

[18] Fields, B. 2011. Contextualize your listening : the
playlist as recommendation engine. Goldsmiths
College (University of London).

[19] Frakes, W.B. and Baeza-Yates, R. eds. 1992.
Information Retrieval: Data Structures and
Algorithms. Prentice-Hall, Inc.

[20] Gemmis, M. de, Iaquinta, L., Lops, P., Musto, C.,
Narducci, F. and Semeraro, G. 2010. Learning
Preference Models in Recommender Systems.
Preference Learning. J. Fürnkranz and E. Hüllermeier,
eds. Springer Berlin Heidelberg. 387–407.

[21] Goldberg, K., Roeder, T., Gupta, D. and Perkins, C.
2001. Eigentaste: A Constant Time Collaborative
Filtering Algorithm. Inf. Retr. 4, 2 (Jul. 2001), 133–
151. DOI:https://doi.org/10.1023/A:1011419012209.

[22] Gomez-Uribe, C.A. and Hunt, N. 2015. The Netflix
Recommender System: Algorithms, Business Value,
and Innovation. ACM Trans. Manage. Inf. Syst. 6, 4
(Dec. 2015), 13:1–13:19.
DOI:https://doi.org/10.1145/2843948.

[23] Herlocker, J.L., Konstan, J.A., Borchers, A. and Riedl,
J. 1999. An Algorithmic Framework for Performing
Collaborative Filtering. Proceedings of the 22Nd
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(New York, NY, USA, 1999), 230–237.

[24] Jannach, D. ed. 2011. Recommender systems: an
introduction. Cambridge University Press.

[25] John, J. 2006. Pandora and the music genome project.
Scientific Computing. 23, 10 (Aug. 2006), 40–41.

[26] Kanoje, S., Mukhopadhyay, D. and Girase, S. 2016.
User Profiling for University Recommender System
Using Automatic Information Retrieval. Procedia
Computer Science. 78, (2016), 5–12.
DOI:https://doi.org/10.1016/j.procs.2016.02.002.

[27] Koren, Y. 2008. Factorization Meets the
Neighborhood: A Multifaceted Collaborative Filtering
Model. Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery

2017 COMBINING CONTENT WITH A COLLABORATIVE FILTER 11

and Data Mining (New York, NY, USA, 2008), 426–
434.

[28] Linden, G., Smith, B. and York, J. 2003. Amazon.com
recommendations: item-to-item collaborative filtering.
IEEE Internet Computing. 7, 1 (Jan. 2003), 76–80.
DOI:https://doi.org/10.1109/MIC.2003.1167344.

[29] Liu, H., Hu, Z., Mian, A., Tian, H. and Zhu, X. 2014.
A new user similarity model to improve the accuracy
of collaborative filtering. Knowledge-Based Systems.
56, (Jan. 2014), 156–166.
DOI:https://doi.org/10.1016/j.knosys.2013.11.006.

[30] Lops, P., Gemmis, M. de and Semeraro, G. 2011.
Content-based Recommender Systems: State of the
Art and Trends. Recommender Systems Handbook. F.
Ricci, L. Rokach, B. Shapira, and P.B. Kantor, eds.
Springer US. 73–105.

[31] MacWilliams, M.W. 2008. Japanese Visual Culture.
M.E. Sharpe.

[32] Melville, P., Mooney, R.J. and Nagarajan, R. 2002.
Content-boosted Collaborative Filtering for Improved
Recommendations. Eighteenth National Conference
on Artificial Intelligence (Menlo Park, CA, USA,
2002), 187–192.

[33] Melville, P. and Sindhwani, V. 2011. Recommender
Systems. Encyclopedia of Machine Learning. C.
Sammut and G.I. Webb, eds. Springer Publishing
Company, Incorporated.

[34] Micarelli, A., Sciarrone, F. and Marinilli, M. 2007.
Web Document Modeling. The Adaptive Web. P.
Brusilovsky, A. Kobsa, and W. Nejdl, eds. Springer
Berlin Heidelberg. 155–192.

[35] Mooney, R.J. and Roy, L. 2000. Content-based Book
Recommending Using Learning for Text
Categorization. Proceedings of the Fifth ACM
Conference on Digital Libraries (New York, NY,
USA, 2000), 195–204.

[36] Otmazgin, N. 2014. Anime in the US: The
Entrepreneurial Dimensions of Globalized Culture.
Pacific Affairs. 87, 1 (Mar. 2014), 53–69.
DOI:https://doi.org/10.5509/201487153.

[37] Pazzani, M.J. and Billsus, D. 2007. Content-Based
Recommendation Systems. The Adaptive Web. P.
Brusilovsky, A. Kobsa, and W. Nejdl, eds. Springer
Berlin Heidelberg. 325–341.

[38] Poitras, G. 2001. Anime Essentials: Every Thing a Fan
Needs to Know. Stone Bridge Press.

[39] Porter, M.F. 1980. An algorithm for suffix stripping.
Program. 14, 3 (1980), 130–137.

[40] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P.
and Riedl, J. 1994. GroupLens: An Open Architecture
for Collaborative Filtering of Netnews. Proceedings of
the 1994 ACM Conference on Computer Supported
Cooperative Work (New York, NY, USA, 1994), 175–
186.

[41] Resnick, P. and Varian, H.R. 1997. Recommender
Systems. Commun. ACM. 40, 3 (Mar. 1997), 56–58.
DOI:https://doi.org/10.1145/245108.245121.

[42] Ricci, F., Rokach, L. and Shapira, B. 2011.
Introduction to Recommender Systems Handbook.
Recommender Systems Handbook. F. Ricci, L.
Rokach, B. Shapira, and P.B. Kantor, eds. Springer
US. 1–35.

[43] Sarwar, B., Karypis, G., Konstan, J. and Riedl, J.
2001. Item-based Collaborative Filtering
Recommendation Algorithms. Proceedings of the 10th
International Conference on World Wide Web (New
York, NY, USA, 2001), 285–295.

[44] Schafer, J.B., Frankowski, D., Herlocker, J. and Sen,
S. 2007. Collaborative Filtering Recommender
Systems. The Adaptive Web. P. Brusilovsky, A.
Kobsa, and W. Nejdl, eds. Springer Berlin Heidelberg.
291–324.

[45] Shani, G. and Gunawardana, A. 2011. Evaluating
recommendation systems. Recommender systems
handbook. Springer. 257–297.

[46] Smyth, B. 2007. Case-Based Recommendation. The
Adaptive Web. P. Brusilovsky, A. Kobsa, and W.
Nejdl, eds. Springer Berlin Heidelberg. 342–376.

[47] Su, X. and Khoshgoftaar, T.M. 2009. A Survey of
Collaborative Filtering Techniques. Adv. in Artif.
Intell. 2009, (Jan. 2009), 4:2–4:2.
DOI:https://doi.org/10.1155/2009/421425.

[48] Yao, Y.Y. 1995. Measuring Retrieval Effectiveness
Based on User Preference of Documents. J. Am. Soc.
Inf. Sci. 46, 2 (Mar. 1995), 133–145.
DOI:https://doi.org/10.1002/(SICI)1097-
4571(199503)46:2<133::AID-ASI6>3.0.CO;2-Z.

[49] Zanker, M., Gordea, S., Jessenitschnig, M. and
Schnabl, M. 2006. A Hybrid Similarity Concept for
Browsing Semi-structured Product Items. E-
Commerce and Web Technologies (Berlin, Heidelberg,
Sep. 2006), 21–30.

[50] 2014. An Integrated Approach to TV and VOD
Recommendations. Red Bee Media Ltd.

2017 COMBINING CONTENT WITH A COLLABORATIVE FILTER 12

	Combining Content with a Collaborative Filter section 1
	Combining Content with a Collaborative Filter section 2a
	The Domain
	The Algorithms
	User-based Collaborative Filtering
	Item-based collaborative filtering
	Content-based recommendation
	Finally, content-based filters lack the ability to give recommendations for items that the user may like that do not contain content from a user’s profile [33]. “It may be that listeners who enjoy free jazz also enjoy avant-garde classical music, but ...
	Hybrid algorithms

	Results
	Conclusions
	Works Cited

